On 4 and 6 July 2019, two large strike‐slip earthquakes with
- Award ID(s):
- 1802364
- NSF-PAR ID:
- 10330529
- Date Published:
- Journal Name:
- Bulletin of the Seismological Society of America
- Volume:
- 111
- Issue:
- 6
- ISSN:
- 0037-1106
- Page Range / eLocation ID:
- 3226 to 3236
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract W ‐phase moment magnitudesM WW 6.5 (foreshock) andM WW 7.1 (mainshock) struck the Eastern California Shear Zone, northeast of Ridgecrest. The faulting geometry and kinematic coseismic slip distribution of both events are determined by jointly inverting seismological and geodetic observations guided by aftershock and surface rupture locations. The foreshock ruptured two orthogonal faults with a prominent L‐shaped geometry with maximum slip of ~1.1 m on the NE‐SW segment. The mainshock faulting extended NW‐SE along several primary fault segments that straddle the foreshock slip. The surface rupture and slip model indicate mostly near‐horizontal strike‐slip motion with maximum slip of ~3.7 m, but there is a localized vertical dip‐slip motion. Both the foreshock and mainshock ruptures terminate in regions of complex surface offsets. High aftershock productivity and low rupture velocity may be the result of rupture of a relatively immature fault system. -
Abstract Despite a lack of modern large earthquakes on shallowly dipping normal faults, Holocene M w > 7 low-angle normal fault (LANF; dip<30°) ruptures are preserved paleoseismically and inferred from historical earthquake and tsunami accounts. Even in well-recorded megathrust earthquakes, the effects of non-linear off-fault plasticity and dynamically reactivated splay faults on shallow deformation and surface displacements, and thus hazard, remain elusive. We develop data-constrained 3D dynamic rupture models of the active Mai’iu LANF that highlight how multiple dynamic shallow deformation mechanisms compete during large LANF earthquakes. We show that shallowly-dipping synthetic splays host more coseismic slip and limit shallow LANF rupture more than steeper antithetic splays. Inelastic hanging-wall yielding localizes into subplanar shear bands indicative of newly initiated splay faults, most prominently above LANFs with thick sedimentary basins. Dynamic splay faulting and sediment failure limit shallow LANF rupture, modulating coseismic subsidence patterns, near-shore slip velocities, and the seismic and tsunami hazards posed by LANF earthquakes.more » « less
-
Flow connectivity between master and relay faults in the Ikertôq shear zone demonstrates that multiple ruptures during ancient earthquakes occurred during a single seismic event. The Ikertôq shear zone (ISZ) is part of the Paleoproterozoic Nagssuqtoqidian orogeny continental collision in West Greenland that includes a > 50 km pseudotachylyte system. As part of an NSF REU, this team mapped various faults throughout a 2 km transect on high-resolution UAV images of exhumed pseudotachylyte vein systems on the western end of Sarfannguit island to investigate the kinematics of multi-fault ruptures during individual seismic events. Pseudotachylyte veins exhibit a complex rupture geometry with linked kinematics between oblique reverse master faults striking approximately 240 and steep east-west relay faults dominated by strike-slip movement. Near complete exposure of veins provide a unique opportunity to document fault linkages and the partitioning of slip, including the interconnectivity of flow patterns of melt in pseudotachylyte veins, as well as angular ladders of melt. We measured the thickness of pseudotachylyte fault veins and injection veins along transects to examine slip partitioning between multiple reverse faults and strike-slip relay faults. Melt thickness is used as a proxy for earthquake slip since the pseudotachylyte melt occurred on faults that exhibit preexisting brittle displacement. The results of preliminary calculations from energy balance equations show that typical slip on some oblique reverse master faults was on the order of a meter or less, while typical slip on some east-west relay faults was cm scale. Our data clarify that most slip occurred on oblique reverse master faults with subsidiary slip on east-west relay faults.more » « less
-
Abstract Average strain across the Great Basin over the past 15 Kyr derived from slip rates on individual faults shows a concentration of both right‐lateral shear and extension in the western Great Basin (Walker Lane). Straining is modest across the central Great Basin, with a zone of higher strain in the eastern Great Basin including the Wasatch Front. The horizontal velocity field derived from 15‐ka fault slip rates is similar to the pattern of GPS velocities, suggesting that regional strain release patterns have been constant over the past 15 Kyr. The magnitudes of velocities inferred from fault slip rates, relative to North America, are lower than those from GPS in the Walker Lane, suggesting that the geologic record is missing evidence of strike slip on faults, and seismic hazard may be higher than suggested by fault slip rates alone. The observed strain concentration in the western Great Basin is consistent with a Sierra Nevada block that is more rigid than the surrounding lithosphere of nonlinear rheology, which concentrates strain east of and adjacent to the rigid block. Treating the western U.S. as a thin viscous sheet with the Sierra Nevada block as a rigid boundary provides a consistent history of continuous deformation in the Walker Lane over decadal, millennial, and Neogene timescales.
-
null (Ed.)Existing models of intracontinental deformation have focused on plate-like rigid body motion v. viscous-flow-like distributed deformation. To elucidate how plate convergence is accommodated by intracontinental strike-slip faulting and block rotation within a fold–thrust belt, we examine the Cenozoic structural framework of the central Qilian Shan of northeastern Tibet, where the NW-striking, right-slip Elashan and Riyueshan faults terminate at the WNW-striking, left-slip Haiyuan and Kunlun faults. Field- and satellite-based observations of discrete right-slip fault segments, releasing bends, horsetail termination splays and off-fault normal faulting suggest that the right-slip faults accommodate block rotation and distributed west–east crustal stretching between the Haiyuan and Kunlun faults. Luminescence dating of offset terrace risers along the Riyueshan fault yields a Quaternary slip rate of c. 1.1 mm a −1 , which is similar to previous estimates. By integrating our results with regional deformation constraints, we propose that the pattern of Cenozoic deformation in northeastern Tibet is compatible with west–east crustal stretching/lateral displacement, non-rigid off-fault deformation and broad clockwise rotation and bookshelf faulting, which together accommodate NE–SW India–Asia convergence. In this model, the faults represent strain localization that approximates continuum deformation during regional clockwise lithospheric flow against the rigid Eurasian continent. Supplementary material: Luminescence dating procedures and protocols is available at https://doi.org/10.17605/OSF.IO/CR9MN Thematic collection: This article is part of the Fold-and-thrust belts and associated basins collection available at: https://www.lyellcollection.org/cc/fold-and-thrust-beltsmore » « less