skip to main content


Title: HyperSoRec: Exploiting Hyperbolic User and Item Representations with Multiple Aspects for Social-aware Recommendation
Social recommendation has achieved great success in many domains including e-commerce and location-based social networks. Existing methods usually explore the user-item interactions or user-user connections to predict users’ preference behaviors. However, they usually learn both user and item representations in Euclidean space, which has large limitations for exploring the latent hierarchical property in the data. In this article, we study a novel problem of hyperbolic social recommendation, where we aim to learn the compact but strong representations for both users and items. Meanwhile, this work also addresses two critical domain-issues, which are under-explored. First, users often make trade-offs with multiple underlying aspect factors to make decisions during their interactions with items. Second, users generally build connections with others in terms of different aspects, which produces different influences with aspects in social network. To this end, we propose a novel graph neural network (GNN) framework with multiple aspect learning, namely, HyperSoRec. Specifically, we first embed all users, items, and aspects into hyperbolic space with superior representations to ensure their hierarchical properties. Then, we adapt a GNN with novel multi-aspect message-passing-receiving mechanism to capture different influences among users. Next, to characterize the multi-aspect interactions of users on items, we propose an adaptive hyperbolic metric learning method by introducing learnable interactive relations among different aspects. Finally, we utilize the hyperbolic translational distance to measure the plausibility in each user-item pair for recommendation. Experimental results on two public datasets clearly demonstrate that our HyperSoRec not only achieves significant improvement for recommendation performance but also shows better representation ability in hyperbolic space with strong robustness and reliability.  more » « less
Award ID(s):
1939725 1947135
NSF-PAR ID:
10332502
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Information Systems
Volume:
40
Issue:
2
ISSN:
1046-8188
Page Range / eLocation ID:
1 to 28
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Social recommendation task aims to predict users' preferences over items with the incorporation of social connections among users, so as to alleviate the sparse issue of collaborative filtering. While many recent efforts show the effectiveness of neural network-based social recommender systems, several important challenges have not been well addressed yet: (i) The majority of models only consider users’ social connections, while ignoring the inter-dependent knowledge across items; (ii) Most of existing solutions are designed for singular type of user-item interactions, making them infeasible to capture the interaction heterogeneity; (iii) The dynamic nature of user-item interactions has been less explored in many social-aware recommendation techniques. To tackle the above challenges, this work proposes a Knowledge-aware Coupled Graph Neural Network (KCGN) that jointly injects the inter-dependent knowledge across items and users into the recommendation framework. KCGN enables the high-order user- and item-wise relation encoding by exploiting the mutual information for global graph structure awareness. Additionally, we further augment KCGN with the capability of capturing dynamic multi-typed user-item interactive patterns. Experimental studies on real-world datasets show the effectiveness of our method against many strong baselines in a variety of settings. Source codes are available at: https://github.com/xhcdream/KCGN. 
    more » « less
  2. null (Ed.)
    Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complex and user relations can be high-order. Hypergraph provides a natural way to model high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. Extensive experiments on multiple real-world datasets demonstrate the superiority of the proposed model over the current SOTA methods, and the ablation study verifies the effectiveness and rationale of the multi-channel setting and the self-supervised task. The implementation of our model is available via https://github.com/Coder-Yu/RecQ. 
    more » « less
  3. Conversational recommender systems (CRS) dynamically obtain the users' preferences via multi-turn questions and answers. The existing CRS solutions are widely dominated by deep reinforcement learning algorithms. However, deep reinforcement learning methods are often criticized for lacking interpretability and requiring a large amount of training data to perform.In this paper, we explore a simpler alternative and propose a decision tree based solution to CRS. The underlying challenge in CRS is that the same item can be described differently by different users. We show that decision trees are sufficient to characterize the interactions between users and items, and solve the key challenges in multi-turn CRS: namely which questions to ask, how to rank the candidate items, when to recommend, and how to handle user's negative feedback on the recommendations. Firstly, the training of decision trees enables us to find questions which effectively narrow down the search space. Secondly, by learning embeddings for each item and tree nodes, the candidate items can be ranked based on their similarity to the conversation context encoded by the tree nodes. Thirdly, the diversity of items associated with each tree node allows us to develop an early stopping strategy to decide when to make recommendations. Fourthly, when the user rejects a recommendation, we adaptively choose the next decision tree to improve subsequent questions and recommendations. Extensive experiments on three publicly available benchmark CRS datasets show that our approach provides significant improvement to the state of the art CRS methods. 
    more » « less
  4. null (Ed.)
    People are looking for complementary contexts, such as team members of complementary skills for project team building and/or reading materials of complementary knowledge for effective student learning, to make their behaviors more likely to be successful. Complementarity has been revealed by behavioral sciences as one of the most important factors in decision making. Existing computational models that learn low-dimensional context representations from behavior data have poor scalability and recent network embedding methods only focus on preserving the similarity between the contexts. In this work, we formulate a behavior entry as a set of context items and propose a novel representation learning method, Multi-type Itemset Embedding , to learn the context representations preserving the itemset structures. We propose a measurement of complementarity between context items in the embedding space. Experiments demonstrate both effectiveness and efficiency of the proposed method over the state-of-the-art methods on behavior prediction and context recommendation. We discover that the complementary contexts and similar contexts are significantly different in human behaviors. 
    more » « less
  5. User representation learning is vital to capture diverse user preferences, while it is also challenging as user intents are latent and scattered among complex and different modalities of user-generated data, thus, not directly measurable. Inspired by the concept of user schema in social psychology, we take a new perspective to perform user representation learning by constructing a shared latent space to capture the dependency among different modalities of user-generated data. Both users and topics are embedded to the same space to encode users' social connections and text content, to facilitate joint modeling of different modalities, via a probabilistic generative framework. We evaluated the proposed solution on large collections of Yelp reviews and StackOverflow discussion posts, with their associated network structures. The proposed model outperformed several state-of-the-art topic modeling based user models with better predictive power in unseen documents, and state-of-the-art network embedding based user models with improved link prediction quality in unseen nodes. The learnt user representations are also proved to be useful in content recommendation, e.g., expert finding in StackOverflow. 
    more » « less