skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ECG Biometric Spoofing Using Adversarial Machine Learning
As the Covid-19 pandemic becomes a nationwide problem, physical contact is no longer acceptable. Therefore, biometric technology can be used for practicing social distancing to prevent the spread of the virus. However, face and fingerprint are vulnerable to presentation attacks. Hence alternative modalities such as ECG based biometric become popular. In this paper, we develop a novel presentation attack using a GAN where a short template of the victim's ECG is captured by an attacker and used to generate synthetic fake ECG signals. We also propose a novel framework utilizing residual neural network architecture to analyze ECG presentation attacks.  more » « less
Award ID(s):
2104520
PAR ID:
10333140
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE International Conference on Consumer Electronics (ICCE)
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Implantable medical devices (IMD) such as pacemakers, and cardiac defibrillators are becoming increasingly interconnected to networks for remote patient monitoring. However, networked devices are vulnerable to external attacks that could allow adversaries to gain unauthorized access to devices/ data and break patient privacy. To design a lightweight computational trustworthy of IMD, we propose novel ECG-based biometric authentication using lift and shift method based on post-processing data from the noise generated in an ECG signal recording. The lift and shift method is an ideal addition to this system because it is a quick, lightweight process that produces enough random bits for encrypted communication. ECG is a signal that is already being measured by the IMD, so this ECG biometric could utilize the data that is already being actively recorded. We provide a comprehensive evaluation across multiple NIST tests, as well as ENT and Dieharder statistical suites test 
    more » « less
  2. Reliability and accuracy of iris biometric modality has prompted its large-scale deployment for critical applications such as border control and national ID projects. The extensive growth of iris recognition systems has raised apprehensions about susceptibility of these systems to various attacks. In the past, researchers have examined the impact of various iris presentation attacks such as textured contact lenses and print attacks. In this research, we present a novel presentation attack using deep learning based synthetic iris generation. Utilizing the generative capability of deep convolutional generative adversarial networks and iris quality metrics, we propose a new framework, named as iDCGAN (iris deep convolutional generative adversarial network) for generating realistic appearing synthetic iris images. We demonstrate the effect of these synthetically generated iris images as presentation attack on iris recognition by using a commercial system. The state-of-the-art presentation attack detection framework, DESIST is utilized to analyze if it can discriminate these synthetically generated iris images from real images. The experimental results illustrate that mitigating the proposed synthetic presentation attack is of paramount importance. 
    more » « less
  3. Presentation attacks such as using a contact lens with a printed pattern or printouts of an iris can be utilized to bypass a biometric security system. The first international iris liveness competition was launched in 2013 in order to assess the performance of presentation attack detection (PAD) algorithms, with a second competition in 2015. This paper presents results of the third competition, LivDet-Iris 2017. Three software-based approaches to Presentation Attack Detection were submitted. Four datasets of live and spoof images were tested with an additional cross-sensor test. New datasets and novel situations of data have resulted in this competition being of a higher difficulty than previous competitions. Anonymous received the best results with a rate of rejected live samples of 3.36% and rate of accepted spoof samples of 14.71%. The results show that even with advances, printed iris attacks as well as patterned contacts lenses are still difficult for software-based systems to detect. Printed iris images were easier to be differentiated from live images in comparison to patterned contact lenses as was also seen in previous competitions. 
    more » « less
  4. Electrocardiography (ECG) is the process of recording the electrical activity of the human heart over time using electrodes that are placed over the skin. While the primary usage of electrocardiograms, the recorded signals, has been focused on the check of signs of heart-related diseases, recent studies have moved also toward their usage for human authentication. Thus, an ECG signal can be unique enough to be used independently as a biometric modality. In addition to its inherent liveness detection, it is easy to collect and can be easily captured either via sensors attached to the human body (fingertips, chest, wrist) or even passively using wireless sensors. In this paper, we propose a novel approach that exploits the spectro-temporal dynamic characteristics of the ECG signal to establish personal recognition system using both short-time Fourier transform (STFT) and generalized Morse wavelets (CWT). This process results in enriching the information extracted from the original ECG signal that is inserted in a 2D convolutional neural network (CNN) which extracts higher level and subject-specific ECG-based features for each individual. To validate our proposed CNN model, we performed nested cross-validation using eight different ECG databases. These databases are considered challenging since they include both normal and abnormal heartbeats as well as a dynamic number of subjects. Our proposed algorithms yield superior performance when compared to other state-ofart approaches discussed in the literature, i.e. the STFT-based one achieves an average identification rate, equal error rate (EER), and area under curve (AUC) of 97.86%, 0.0268, and 0.9933 respectively, whereas the CWT achieves comparable to STFT results in 97.5%, 0.0386, and 0.9882 respectively. 
    more » « less
  5. Fingerprint capture systems can be fooled by widely accessible methods to spoof the system using fake fingers, known as presentation attacks. As biometric recognition systems become more extensively relied upon at international borders and in consumer electronics, presentation attacks are becoming an increasingly serious issue. A robust solution is needed that can handle the increased variability and complexity of spoofing techniques. This paper demonstrates the viability of utilizing a sensor with time-series and color-sensing capabilities to improve the robust-ness of a traditional fingerprint sensor and introduces a comprehensive fingerprint dataset with over 36,000 image sequences and a state-of-the-art set of spoofing techniques. The specific sensor used in this research captures a traditional gray-scale static capture and a time-series color capture simultaneously. Two different methods for Presentation Attack Detection (PAD) are used to assess the benefit of a color dynamic capture. The first algorithm utilizes Static-Temporal Feature Engineering on the fingerprint capture to generate a classification decision. The second generates its classification decision using features extracted by way of the Inception V3 CNN trained on ImageNet. Classification performance is evaluated using features extracted exclusively from the static capture, exclusively from the dynamic capture, and on a fusion of the two feature sets. With both PAD approaches we find that the fusion of the dynamic and static feature-set is shown to improve performance to a level not individually achievable. 
    more » « less