skip to main content


Title: PLATINUM: Semi-Supervised Model Agnostic Meta-Learning using Submodular Mutual Information
Few-shot classification (FSC) requires training models using a few (typically one to five) data points per class. Meta learning has proven to be able to learn a parametrized model for FSC by training on various other classification tasks. In this work, we propose PLATINUM (semi-suPervised modeL Agnostic meTa-learnIng usiNg sUbmodular Mutual information), a novel semi-supervised model agnostic meta-learning framework that uses the submodular mutual information (SMI) functions to boost the performance of FSC. PLATINUM leverages unlabeled data in the inner and outer loop using SMI functions during meta-training and obtains richer meta-learned parameterizations for meta-test. We study the performance of PLATINUM in two scenarios - 1) where the unlabeled data points belong to the same set of classes as the labeled set of a certain episode, and 2) where there exist out-of-distribution classes that do not belong to the labeled set. We evaluate our method on various settings on the miniImageNet, tieredImageNet and Fewshot-CIFAR100 datasets. Our experiments show that PLATINUM outperforms MAML and semi-supervised approaches like pseduo-labeling for semi-supervised FSC, especially for small ratio of labeled examples per class.  more » « less
Award ID(s):
2106937
NSF-PAR ID:
10336077
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of Machine Learning Research
ISSN:
2640-3498
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chaudhuri, Kamalika ; Jegelka, Stefanie ; Song, Le ; Szepesyari, Csaba ; Niu, Gang ; Sabato, Sivan (Ed.)
    Few-shot classification (FSC) requires training models using a few (typically one to five) data points per class. Meta-learning has proven to be able to learn a parametrized model for FSC by training on various other classification tasks. In this work, we propose PLATINUM (semi-suPervised modeL Agnostic meTa learnIng usiNg sUbmodular Mutual information ), a novel semi-supervised model agnostic meta learning framework that uses the submodular mutual in- formation (SMI) functions to boost the perfor- mance of FSC. PLATINUM leverages unlabeled data in the inner and outer loop using SMI func- tions during meta-training and obtains richer meta- learned parameterizations. We study the per- formance of PLATINUM in two scenarios - 1) where the unlabeled data points belong to the same set of classes as the labeled set of a cer- tain episode, and 2) where there exist out-of- distribution classes that do not belong to the la- beled set. We evaluate our method on various settings on the miniImageNet, tieredImageNet and CIFAR-FS datasets. Our experiments show that PLATINUM outperforms MAML and semi- supervised approaches like pseduo-labeling for semi-supervised FSC, especially for small ratio of labeled to unlabeled samples. 
    more » « less
  2. null (Ed.)
    Weakly labeled data are inevitable in various research areas in artificial intelligence (AI) where one has a modicum of knowledge about the complete dataset. One of the reasons for weakly labeled data in AI is insufficient accurately labeled data. Strict privacy control or accidental loss may also cause missing-data problems. However, supervised machine learning (ML) requires accurately labeled data in order to successfully solve a problem. Data labeling is difficult and time-consuming as it requires manual work, perfect results, and sometimes human experts to be involved (e.g., medical labeled data). In contrast, unlabeled data are inexpensive and easily available. Due to there not being enough labeled training data, researchers sometimes only obtain one or few data points per category or label. Training a supervised ML model from the small set of labeled data is a challenging task. The objective of this research is to recover missing labels from the dataset using state-of-the-art ML techniques using a semisupervised ML approach. In this work, a novel convolutional neural network-based framework is trained with a few instances of a class to perform metric learning. The dataset is then converted into a graph signal, which is recovered using a recover algorithm (RA) in graph Fourier transform. The proposed approach was evaluated on a Fashion dataset for accuracy and precision and performed significantly better than graph neural networks and other state-of-the-art methods 
    more » « less
  3. A fundamental limitation of applying semi-supervised learning in real-world settings is the assumption that unlabeled test data contains only classes previously encountered in the labeled training data. However, this assumption rarely holds for data in-the-wild, where instances belonging to novel classes may appear at testing time. Here, we introduce a novel open-world semi-supervised learning setting that formalizes the notion that novel classes may appear in the unlabeled test data. In this novel setting, the goal is to solve the class distribution mismatch between labeled and unlabeled data, where at the test time every input instance either needs to be classified into one of the existing classes or a new unseen class needs to be initialized. To tackle this challenging problem, we propose ORCA, an end-to-end deep learning approach that introduces uncertainty adaptive margin mechanism to circumvent the bias towards seen classes caused by learning discriminative features for seen classes faster than for the novel classes. In this way, ORCA reduces the gap between intra-class variance of seen with respect to novel classes. Experiments on image classification datasets and a single-cell annotation dataset demonstrate that ORCA consistently outperforms alternative baselines, achieving 25% improvement on seen and 96% improvement on novel classes of the ImageNet dataset. 
    more » « less
  4. Inspired by the extensive success of deep learning, graph neural networks (GNNs) have been proposed to learn expressive node representations and demonstrated promising performance in various graph learning tasks. However, existing endeavors predominately focus on the conventional semi-supervised setting where relatively abundant gold-labeled nodes are provided. While it is often impractical due to the fact that data labeling is unbearably laborious and requires intensive domain knowledge, especially when considering the heterogeneity of graph-structured data. Under the few-shot semi-supervised setting, the performance of most of the existing GNNs is inevitably undermined by the overfitting and oversmoothing issues, largely owing to the shortage of labeled data. In this paper, we propose a decoupled network architecture equipped with a novel meta-learning algorithm to solve this problem. In essence, our framework Meta-PN infers high-quality pseudo labels on unlabeled nodes via a meta-learned label propagation strategy, which effectively augments the scarce labeled data while enabling large receptive fields during training. Extensive experiments demonstrate that our approach offers easy and substantial performance gains compared to existing techniques on various benchmark datasets. The implementation and extended manuscript of this work are publicly available at https://github.com/kaize0409/Meta-PN. 
    more » « less
  5. null (Ed.)

    Networked data often demonstrate the Pareto principle (i.e., 80/20 rule) with skewed class distributions, where most vertices belong to a few majority classes and minority classes only contain a handful of instances. When presented with imbalanced class distributions, existing graph embedding learning tends to bias to nodes from majority classes, leaving nodes from minority classes under-trained. In this paper, we propose Dual-Regularized Graph Convolutional Networks (DR-GCN) to handle multi-class imbalanced graphs, where two types of regularization are imposed to tackle class imbalanced representation learning. To ensure that all classes are equally represented, we propose a class-conditioned adversarial training process to facilitate the separation of labeled nodes. Meanwhile, to maintain training equilibrium (i.e., retaining quality of fit across all classes), we force unlabeled nodes to follow a similar latent distribution to the labeled nodes by minimizing their difference in the embedding space. Experiments on real-world imbalanced graphs demonstrate that DR-GCN outperforms the state-of-the-art methods in node classification, graph clustering, and visualization.

     
    more » « less