Abstract The Event Horizon Telescope (EHT) has produced images of the plasma flow around the supermassive black holes in Sgr A* and M87* with a resolution comparable to the projected size of their event horizons. Observations with the next-generation Event Horizon Telescope (ngEHT) will have significantly improved Fourier plane coverage and will be conducted at multiple frequency bands (86, 230, and 345 GHz), each with a wide bandwidth. At these frequencies, both Sgr A* and M87* transition from optically thin to optically thick. Resolved spectral index maps in the near-horizon and jet-launching regions of these supermassive black hole sources can constrain properties of the emitting plasma that are degenerate in single-frequency images. In addition, combining information from data obtained at multiple frequencies is a powerful tool for interferometric image reconstruction, since gaps in spatial scales in single-frequency observations can be filled in with information from other frequencies. Here we present a new method of simultaneously reconstructing interferometric images at multiple frequencies along with their spectral index maps. The method is based on existing regularized maximum likelihood (RML) methods commonly used for EHT imaging and is implemented in theeht-imagingPython software library. We show results of this method on simulated ngEHT data sets as well as on real data from the Very Long Baseline Array and Atacama Large Millimeter/submillimeter Array. These examples demonstrate that simultaneous RML multifrequency image reconstruction produces higher-quality and more scientifically useful results than is possible from combining independent image reconstructions at each frequency.
more »
« less
Characterizing and Mitigating Intraday Variability: Reconstructing Source Structure in Accreting Black Holes with mm-VLBI
Abstract The extraordinary physical resolution afforded by the Event Horizon Telescope has opened a window onto the astrophysical phenomena unfolding on horizon scales in two known black holes, M87 * and Sgr A*. However, with this leap in resolution has come a new set of practical complications. Sgr A* exhibits intraday variability that violates the assumptions underlying Earth aperture synthesis, limiting traditional image reconstruction methods to short timescales and data sets with very sparse ( u , v ) coverage. We present a new set of tools to detect and mitigate this variability. We develop a data-driven, model-agnostic procedure to detect and characterize the spatial structure of intraday variability. This method is calibrated against a large set of mock data sets, producing an empirical estimator of the spatial power spectrum of the brightness fluctuations. We present a novel Bayesian noise modeling algorithm that simultaneously reconstructs an average image and statistical measure of the fluctuations about it using a parameterized form for the excess variance in the complex visibilities not otherwise explained by the statistical errors. These methods are validated using a variety of simulated data, including general relativistic magnetohydrodynamic simulations appropriate for Sgr A* and M87 * . We find that the reconstructed source structure and variability are robust to changes in the underlying image model. We apply these methods to the 2017 EHT observations of M87 * , finding evidence for variability across the EHT observing campaign. The variability mitigation strategies presented are widely applicable to very long baseline interferometry observations of variable sources generally, for which they provide a data-informed averaging procedure and natural characterization of inter-epoch image consistency.
more »
« less
- PAR ID:
- 10337490
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 930
- Issue:
- 2
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L21
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Context. In a series of publications, we describe a comprehensive comparison of Event Horizon Telescope (EHT) data with theoretical models of the observed Sagittarius A* (Sgr A*) and Messier 87* (M87*) horizon-scale sources. Aims. In this article, we report on improvements made to our observational data reduction pipeline and present the generation of observables derived from the EHT models. We make use of ray-traced general relativistic magnetohydrodynamic simulations that are based on different black hole spacetime metrics and accretion physics parameters. These broad classes of models provide a good representation of the primary targets observed by the EHT. Methods. We describe how we combined multiple frequency bands and polarization channels of the observational data to improve our fringe-finding sensitivity and stabilization of atmospheric phase fluctuations. To generate realistic synthetic data from our models, we took the signal path as well as the calibration process, and thereby the aforementioned improvements, into account. We could thus produce synthetic visibilities akin to calibrated EHT data and identify salient features for the discrimination of model parameters. Results. We have produced a library consisting of an unparalleled 962 000 synthetic Sgr A*and M87*datasets. In terms of baseline coverage and noise properties, the library encompasses 2017 EHT measurements as well as future observations with an extended telescope array. Conclusions. We differentiate between robust visibility data products related to model features and data products that are strongly affected by data corruption effects. Parameter inference is mostly limited by intrinsic model variability, which highlights the importance of long-term monitoring observations with the EHT. In later papers in this series, we will show how a Bayesian neural network trained on our synthetic data is capable of dealing with the model variability and extracting physical parameters from EHT observations. With our calibration improvements, our newly reduced EHT datasets have a considerably better quality compared to previously analyzed data.more » « less
-
ABSTRACT Faraday rotation has been seen at millimeter wavelengths in several low-luminosity active galactic nuclei, including Event Horizon Telescope (EHT) targets M87* and Sgr A*. The observed rotation measure (RM) probes the density, magnetic field, and temperature of material integrated along the line of sight. To better understand how accretion disc conditions are reflected in the RM, we perform polarized radiative transfer calculations using a set of general relativistic magnetohydrodynamic (GRMHD) simulations appropriate for M87*. We find that in spatially resolved millimetre wavelength images on event horizon scales, the RM can vary by orders of magnitude and even flip sign. The observational consequences of this spatial structure include significant time-variability, sign-flips, and non-λ2 evolution of the polarization plane. For some models, we find that internal RM can cause significant bandwidth depolarization even across the relatively narrow fractional bandwidths observed by the EHT. We decompose the linearly polarized emission in these models based on their RM and find that emission in front of the mid-plane can exhibit orders of magnitude less Faraday rotation than emission originating from behind the mid-plane or within the photon ring. We confirm that the spatially unresolved (i.e. image integrated) RM is a poor predictor of the accretion rate, with substantial scatter stemming from time variability and inclination effects. Models can be constrained with repeated observations to characterize time variability and the degree of non-λ2 evolution of the polarization plane.more » « less
-
Abstract The Event Horizon Telescope (EHT) images of the supermassive black hole at the center of the galaxy M87 provided the first image of the accretion environment on horizon scales. General relativity (GR) predicts that the image of the shadow should be nearly circular given the inclination angle of the black hole M87*. A robust detection of ellipticity in image reconstructions of M87* could signal new gravitational physics on horizon scales. Here we analyze whether the imaging parameters used in EHT analyses are sensitive to ring ellipticity, and measure the constraints on the ellipticity of M87*. We find that the top set is unable to recover ellipticity. Even for simple geometric models, the true ellipticity is biased low, preferring circular rings. Therefore, to place a constraint on the ellipticity of M87*, we measure the ellipticity of 550 synthetic data sets produced from GRMHD simulations. We find that images with intrinsic axis ratios of 2:1 are consistent with the ellipticity seen from EHT image reconstructions.more » « less
-
The next-generation Event Horizon Telescope (ngEHT) will be a significant enhancement of the Event Horizon Telescope (EHT) array, with ∼10 new antennas and instrumental upgrades of existing antennas. The increased uv-coverage, sensitivity, and frequency coverage allow a wide range of new science opportunities to be explored. The ngEHT Analysis Challenges have been launched to inform the development of the ngEHT array design, science objectives, and analysis pathways. For each challenge, synthetic EHT and ngEHT datasets are generated from theoretical source models and released to the challenge participants, who analyze the datasets using image reconstruction and other methods. The submitted analysis results are evaluated with quantitative metrics. In this work, we report on the first two ngEHT Analysis Challenges. These have focused on static and dynamical models of M87* and Sgr A* and shown that high-quality movies of the extended jet structure of M87* and near-horizon hourly timescale variability of Sgr A* can be reconstructed by the reference ngEHT array in realistic observing conditions using current analysis algorithms. We identify areas where there is still room for improvement of these algorithms and analysis strategies. Other science cases and arrays will be explored in future challenges.more » « less
An official website of the United States government

