skip to main content


Title: Distinguishing 6d (1,0) SCFTs: an extension to the geometric construction
We provide a new extension to the geometric construction of 6d (1, 0) SCFTs that encap- sulates Higgs branch structures with identical global symmetry but different spectra. In particular, we find that there exist distinct 6d (1, 0) SCFTs that may appear to share their tensor branch description, flavor symmetry algebras, and central charges. For example, such subtleties arise for the very even nilpotent Higgsing of (so4k,so4k) conformal matter; we pro- pose a method to predict at which conformal dimension the Higgs branch operators of the two theories differ via augmenting the tensor branch description with the Higgs branch chiral ring generators of the building block theories. Torus compactifications of these 6d (1, 0) SCFTs give rise to 4d N = 2 SCFTs of class S and the Higgs branch of such 4d theories are cap- tured via the Hall–Littlewood index. We confirm that the resulting 4d theories indeed differ in their spectra in the predicted conformal dimension from their Hall–Littlewood indices. We highlight how this ambiguity in the tensor branch description arises beyond the very even nilpotent Higgsing of (so4k,so4k) conformal matter, and hence should be understood for more general classes of 6d (1, 0) SCFTs.  more » « less
Award ID(s):
1914679
NSF-PAR ID:
10339046
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate global symmetries for 6D SCFTs and LSTs having a single “unpaired” tensor, that is, a tensor with no associated gauge symmetry. We verify that for every such theory built from F‐theory whose tensor has Dirac self‐pairing equal to −1, the global symmetry algebra is a subalgebra of. This result is new if the F‐theory presentation of the theory involves a one‐parameter family of nodal or cuspidal rational curves (i.e., Kodaira typesI1orII) rather than elliptic curves (Kodaira typeI0). For such theories, this condition on the global symmetry algebra appears to fully capture the constraints on coupling these theories to others in the context of multi‐tensor theories. We also study the analogous problem for theories whose tensor has Dirac self‐pairing equal to −2 and find that the global symmetry algebra is a subalgebra of. However, in this case there are additional constraints on F‐theory constructions for coupling these theories to others.

     
    more » « less
  2. We classify 5d N=1 gauge theories carrying a simple gauge group that can arise by mass-deforming 5d SCFTs and 6d SCFTs (compactified on a circle, possibly with a twist). For theories having a 6d UV completion, we determine the tensor branch data of the 6d SCFT and capture the twist in terms of the tensor branch data. We also determine the dualities between these 5d gauge theories, thus determining the sets of gauge theories having a common UV completion. 
    more » « less
  3. A bstract We present new families of AdS 5 solutions in M-theory preserving 4d $$ \mathcal{N} $$ N = 2 supersymmetry. We perform a systematic analysis of holographic observables for these solutions, providing evidence for an interpretation in terms of 4d superconformal field theories (SCFTs) of Argyres-Douglas type, realized in class $$ \mathcal{S} $$ S via a sphere with one irregular, and one regular puncture. The gravity solutions exhibit internal M5-brane sources that correspond to the irregular puncture. For a family of solutions, we identify explicitly the class $$ \mathcal{S} $$ S puncture data and perform a detailed match, including Higgs branch operators. For other families we comment on proposed field theory duals, based on irregular punctures labeled by nested Young tableaux. 
    more » « less
  4. We study 6d superconformal field theories (SCFTs) compactified on a circle with arbitrary twists. The theories obtained after compactification, often referred to as 5d Kaluza-Klein (KK) theories, can be viewed as starting points for RG flows to 5d SCFTs. According to a conjecture, all 5d SCFTs can be obtained in this fashion. We compute the Coulomb branch prepotential for all 5d KK theories obtainable in this manner and associate to these theories a smooth local genus one fibered Calabi-Yau threefold in which is encoded information about all possible RG flows to 5d SCFTs. These Calabi-Yau threefolds provide hitherto unknown M-theory duals of F-theory configurations compactified on a circle with twists. For certain exceptional KK theories that do not admit a standard geometric description we propose an algebraic description that appears to retain the properties of the local Calabi-Yau threefolds necessary to determine RG flows to 5d SCFTs, along with other relevant physical data. 
    more » « less
  5. We introduce a class of Higgs-branch RG flows in theories of class-S, which flow between d = 4 N = 2 SCFTs of the same ADE type. We discuss two applications of this class of RG flows: 1) determining the current-algebra levels in SCFTs where they were previously unknown — a program we carry out for the class-S theories of type E6 and E7 — and 2) constructing a multitude of examples of pairs of N = 2 SCFTs whose “conventional invariants” coincide. We disprove the conjecture of [1] that the global form of the flavour symmetry group is a reliable diagnostic for determining when two such theories are isomorphic. 
    more » « less