skip to main content


Title: Spectroscopic Confirmation of the Sixth Globular Cluster in the Fornax Dwarf Spheroidal Galaxy*
Abstract The Fornax dwarf spheroidal galaxy has an anomalous number of globular clusters, five, for its stellar mass. There is a longstanding debate about a potential sixth globular cluster (Fornax 6) that has recently been “rediscovered” in DECam imaging. We present new Magellan/M2FS spectroscopy of the Fornax 6 cluster and Fornax dSph. Combined with literature data we identify ∼15–17 members of the Fornax 6 cluster, showing that this overdensity is indeed a star cluster and associated with the Fornax dSph. The cluster is significantly more metal-rich (mean metallicity of [ Fe / H ] ¯ = −0.71 ± 0.05) than the other five Fornax globular clusters (−2.5 < [Fe/H] < −1.4) and more metal-rich than the bulk of Fornax. We measure a velocity dispersion of 5.6 − 1.6 + 2.0 km s − 1 corresponding to an anomalously high mass-to-light of 15 < M / L < 258 at 90% confidence when calculated assuming equilibrium. Two stars inflate this dispersion and may be either Fornax field stars or as yet unresolved binary stars. Alternatively, the Fornax 6 cluster may be undergoing tidal disruption. Based on its metal-rich nature, the Fornax 6 cluster is likely younger than the other Fornax clusters, with an estimated age of ∼2 Gyr when compared to stellar isochrones. The chemodynamics and star formation history of Fornax shows imprints of major events such as infall into the Milky Way, multiple pericenter passages, star formation bursts, and/or potential mergers or interactions. Any of these events may have triggered the formation of the Fornax 6 cluster.  more » « less
Award ID(s):
1813881 1815767 1815403 1909584
NSF-PAR ID:
10339979
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
923
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
77
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present stellar parameters and abundances of 13 elements for 18 very metal-poor (VMP; [Fe/H] < –2.0) stars, selected as extremely metal-poor (EMP; [Fe/H] < –3.0) candidates from the Sloan Digital Sky Survey and Large sky Area Multi-Object Fiber Spectroscopic Telescope survey. High-resolution spectroscopic observations were performed using GEMINI-N/GRACES. We find 10 EMP stars among our candidates, and we newly identify three carbon-enhanced metal-poor stars with [Ba/Fe] < 0. Although chemical abundances of our VMP/EMP stars generally follow the overall trend of other Galactic halo stars, there are a few exceptions. One Na-rich star ([Na/Fe] = +1.14) with low [Mg/Fe] suggests a possible chemical connection with second-generation stars in a globular cluster. The progenitor of an extremely Na-poor star ([Na/Fe] = –1.02) with high K- and Ni-abundance ratios may have undergone a distinct nucleosynthesis episode, associated with core-collapse supernovae (SNe) having a high explosion energy. We have also found a Mg-rich star ([Mg/Fe] = +0.73) with slightly enhanced Na and extremely low [Ba/Fe], indicating that its origin is not associated with neutron-capture events. On the other hand, the origin of the lowest Mg abundance ([Mg/Fe] = –0.61) star could be explained by accretion from a dwarf galaxy, or formation in a gas cloud largely polluted by SNe Ia. We have also explored the progenitor masses of our EMP stars by comparing their chemical-abundance patterns with those predicted by Population III SNe models, and find a mass range of 10–26 M ⊙ , suggesting that such stars were primarily responsible for the chemical enrichment of the early Milky Way. 
    more » « less
  2. Abstract

    The Milky Way Bulge extra-tidal star survey is a spectroscopic survey with the goal of identifying stripped globular cluster stars from inner Galaxy clusters. In this way, an indication of the fraction of metal-poor bulge stars that originated from globular clusters can be determined. We observed and analyzed stars in and around BH 261, an understudied globular cluster in the bulge. From seven giants within the tidal radius of the cluster, we measured an average heliocentric radial velocity of 〈RV〉 = −61 ± 2.6 km s−1with a radial velocity dispersion of 〈σ〉 = 6.1 ± 1.9 km s−1. The large velocity dispersion may have arisen from tidal heating in the cluster’s orbit about the Galactic center, or because BH 261 has a high dynamical mass as well as a high mass-to-light ratio. From spectra of five giants, we measure an average metallicity of 〈[Fe/H]〉 = −1.1 ± 0.2 dex. We also spectroscopically confirm an RR Lyrae star in BH 261, which yields a distance to the cluster of 7.1 ± 0.4 kpc. Stars with 3D velocities and metallicities consistent with BH 261 reaching to ∼0.°5 from the cluster are identified. A handful of these stars are also consistent with the spatial distribution of potential debris from models focusing on the most recent disruption of the cluster.

     
    more » « less
  3. Abstract

    We present measurements of [Fe/H] and [α/Fe] for 128 individual red giant branch stars (RGB) in the stellar halo of M31, including its Giant Stellar Stream (GSS), obtained using spectral synthesis of low- and medium-resolution Keck/DEIMOS spectroscopy (and 6000, respectively). We observed four fields in M31's stellar halo (at projected radii of 9, 18, 23, and 31 kpc), as well as two fields in the GSS (at 33 kpc). In combination with existing literature measurements, we have increased the sample size of [Fe/H] and [α/Fe] measurements from 101 to a total of 229 individual M31 RGB stars. From this sample, we investigate the chemical abundance properties of M31's inner halo, findingand. Between 8 and 34 kpc, the inner halo has a steep [Fe/H] gradient (−0.025 ± 0.002 dex kpc−1) and negligible [α/Fe] gradient, where substructure in the inner halo is systematically more metal-rich than the smooth component of the halo at a given projected distance. Although the chemical abundances of the inner stellar halo are largely inconsistent with that of present-day dwarf spheroidal (dSph) satellite galaxies of M31, we identified 22 RGB stars kinematically associated with the smooth component of the stellar halo that have chemical abundance patterns similar to M31 dSphs. We discuss formation scenarios for M31's halo, concluding that these dSph-like stars may have been accreted from galaxies of similar stellar mass and star formation history, or of higher stellar mass and similar star formation efficiency.

     
    more » « less
  4. Abstract

    The globular cluster 47 Tucanae (47 Tuc) is one of the most massive star clusters in the Milky Way and is exceptionally rich in exotic stellar populations. For several decades it has been a favorite target of observers, and yet it is computationally very challenging to model because of its large number of stars (N≳ 106) and high density. Here we present detailed and self-consistent 47 Tuc models computed with theCluster Monte Carlocode (CMC). The models include all relevant dynamical interactions coupled to stellar and binary evolution, and reproduce various observations, including the surface brightness and velocity dispersion profiles, pulsar accelerations, and numbers of compact objects. We show that the present properties of 47 Tuc are best reproduced by adopting an initial stellar mass function that is both bottom-heavy and top-light relative to standard assumptions (as in, e.g., Kroupa 2001), and an initial Elson profile (Elson et al. 1987) that is overfilling the cluster’s tidal radius. We include new prescriptions inCMCfor the formation of binaries through giant star collisions and tidal captures, and we show that these mechanisms play a crucial role in the formation of neutron star binaries and millisecond pulsars in 47 Tuc; our best-fit model contains ∼50 millisecond pulsars, 70% of which are formed through giant collisions and tidal captures. Our models also suggest that 47 Tuc presently contains up to ∼200 stellar-mass black holes, ∼5 binary black holes, ∼15 low-mass X-ray binaries, and ∼300 cataclysmic variables.

     
    more » « less
  5. Abstract We report the discovery of Pegasus IV, an ultra-faint dwarf galaxy found in archival data from the Dark Energy Camera processed by the DECam Local Volume Exploration Survey. Pegasus IV is a compact, ultra-faint stellar system ( r 1 / 2 = 41 − 6 + 8 pc; M V = −4.25 ± 0.2 mag) located at a heliocentric distance of 90 − 6 + 4 kpc . Based on spectra of seven nonvariable member stars observed with Magellan/IMACS, we confidently resolve Pegasus IV’s velocity dispersion, measuring σ v = 3.3 − 1.1 + 1.7 km s −1 (after excluding three velocity outliers); this implies a mass-to-light ratio of M 1 / 2 / L V , 1 / 2 = 167 − 99 + 224 M ⊙ / L ⊙ for the system. From the five stars with the highest signal-to-noise spectra, we also measure a systemic metallicity of [Fe/H] = − 2.63 − 0.30 + 0.26 dex, making Pegasus IV one of the most metal-poor ultra-faint dwarfs. We tentatively resolve a nonzero metallicity dispersion for the system. These measurements provide strong evidence that Pegasus IV is a dark-matter-dominated dwarf galaxy, rather than a star cluster. We measure Pegasus IV’s proper motion using data from Gaia Early Data Release 3, finding ( μ α * , μ δ ) = (0.33 ± 0.07, −0.21 ± 0.08) mas yr −1 . When combined with our measured systemic velocity, this proper motion suggests that Pegasus IV is on an elliptical, retrograde orbit, and is currently near its orbital apocenter. Lastly, we identify three potential RR Lyrae variable stars within Pegasus IV, including one candidate member located more than 10 half-light radii away from the system’s centroid. The discovery of yet another ultra-faint dwarf galaxy strongly suggests that the census of Milky Way satellites is still incomplete, even within 100 kpc. 
    more » « less