skip to main content

This content will become publicly available on July 1, 2023

Title: Hamiltonian engineering of spin-orbit coupled fermions in a Wannier-Stark optical lattice clock
Engineering a Hamiltonian system with tunable interactions provides opportunities to optimize performance for quantum sensing and explore emerging phenomena of many-body systems. An optical lattice clock based on partially delocalized Wannier-Stark states in a gravity-tilted shallow lattice supports superior quantum coherence and adjustable interactions via spin-orbit coupling, thus presenting a powerful spin model realization. The relative strength of the on-site and off-site interactions can be tuned to achieve a zero density shift at a `magic' lattice depth. This mechanism, together with a large number of atoms, enables the demonstration of the most stable atomic clock while minimizing a key systematic uncertainty related to atomic density. Interactions can also be maximized by driving off-site Wannier-Stark transitions, realizing a ferromagnetic to paramagnetic dynamical phase transition.
Authors:
; ; ; ; ; ; ;
Award ID(s):
2016244
Publication Date:
NSF-PAR ID:
10340285
Journal Name:
ArXivorg
ISSN:
2331-8422
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Particle transport and localization phenomena in condensed-matter systems can be modeled using a tight-binding lattice Hamiltonian. The ideal experimental emulation of such a model utilizes simultaneous, high-fidelity control and readout of each lattice site in a highly coherent quantum system. Here, we experimentally study quantum transport in one-dimensional and two-dimensional tight-binding lattices, emulated by a fully controllable 3 × 3 array of superconducting qubits. We probe the propagation of entanglement throughout the lattice and extract the degree of localization in the Anderson and Wannier-Stark regimes in the presence of site-tunable disorder strengths and gradients. Our results are in quantitative agreement with numerical simulations and match theoretical predictions based on the tight-binding model. The demonstrated level of experimental control and accuracy in extracting the system observables of interest will enable the exploration of larger, interacting lattices where numerical simulations become intractable.

  2. We present exact results that give insight into how interactions lead to transport and superconductivity in a flat band where the electrons have no kinetic energy. We obtain bounds for the optical spectral weight for flat-band superconductors that lead to upper bounds for the superfluid stiffness and the two-dimensional (2D)Tc. We focus on on-site attraction|U|on the Lieb lattice with trivial flat bands and on the π-flux model with topological flat bands. For trivial flat bands, the low-energy optical spectral weightD̃lowñ|U|Ω/2withñ=minn,2n, where n is the flat-band density and Ω is the Marzari–Vanderbilt spread of the Wannier functions (WFs). We also obtain a lower bound involving the quantum metric. For topological flat bands, with an obstruction to localized WFs respecting all symmetries, we again obtain an upper bound forD̃lowlinear in|U|. We discuss the insights obtained from our bounds by comparing them with mean-field and quantum Monte Carlo results.

  3. Over the past few decades, rapid development of laser cooling techniques and narrow-linewidth lasers have allowed atom-based quantum clocks to achieve unprecedented precision. Techniques originally developed for atomic clocks can be extended to ultracold molecules, with applications ranging from quantum-state-controlled ultracold chemistry to searches for new physics. Because of the richness of molecular structure, quantum metrology based on molecules provides possibilities for testing physics that is beyond the scope of traditional atomic clocks. This thesis presents the work performed to establish a state-of-the-art quantum clock based on ultracold molecules. The molecular clock is based on a frequency difference between two vibrational levels in the electronic ground state of 88Sr2 diatomic molecules. Such a clock allows us test molecular QED, improve constraints on nanometer-scale gravity, and potentially provide a model-independent test of temporal variations of the proton-electron mass ratio. Trap-insensitive spectroscopy is crucial for extending coherent molecule-light interactions and achieving a high quality factor Q. We have demonstrated a magic wavelength technique for molecules by manipulating the optical lattice frequency near narrow polarizability resonances. This general technique allows us to increase the coherence time to tens of ms, an improvement of a factor of several thousand, and to narrow the linewidthmore »of a 25 THz vibrational transition initially to 30 Hz. This width corresponds to the quality factor Q = 8 × 10^11. Besides the molecular quantum metrology, investigations of novel phenomena in state-selected photodissociation are also described in this thesis, including magnetic-field control of photodissociation and observation of the crossover from ultracold to quasiclassical chemistry.« less
  4. In systems with many local degrees of freedom, high-symmetry points in the phase diagram can provide an important starting point for the investigation of their properties throughout the phase diagram. In systems with both spin and orbital (or valley) degrees of freedom such a starting point gives rise to SU(4)-symmetric models.Here we consider SU(4)-symmetric "spin'' models, corresponding to Mott phases at half-filling, i.e. the six-dimensional representation of SU(4). This may be relevant to twisted multilayer graphene.In particular, we study the SU(4) antiferromagnetic "Heisenberg'' model on the triangular lattice, both in the classical limit and in the quantum regime. Carrying out a numerical study using the density matrix renormalization group (DMRG), we argue that the ground state is non-magnetic.We then derive a dimer expansion of the SU(4) spin model. An exact diagonalization (ED) study of the effective dimer model suggests that the ground state breaks translation invariance, forming a valence bond solid (VBS) with a 12-site unit cell.Finally, we consider the effect of SU(4)-symmetry breaking interactions due to Hund's coupling, and argue for a possible phase transition between a VBS and a magnetically ordered state.
  5. Solid-state spin defects are a promising platform for quantum science and technology. The realization of larger-scale quantum systems with solid-state defects will require high-fidelity control over multiple defects with nanoscale separations, with strong spin-spin interactions for multi-qubit logic operations and the creation of entangled states. We demonstrate an optical frequency-domain multiplexing technique, allowing high-fidelity initialization and single-shot spin measurement of six rare-earth (Er3+) ions, within the subwavelength volume of a single, silicon photonic crystal cavity. We also demonstrate subwavelength control over coherent spin rotations by using an optical AC Stark shift. Our approach may be scaled to large numbers of ions with arbitrarily small separation and is a step toward realizing strongly interacting atomic defect ensembles with applications to quantum information processing and fundamental studies of many-body dynamics.