skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Not All SWAPs Have the Same Cost: A Case for Optimization-Aware Qubit Routing
Despite rapid advances in quantum computing technologies, the qubit connectivity limitation remains to be a critical challenge. Both near-term NISQ quantum computers and relatively long-term scalable quantum architectures do not offer full connectivity. As a result, quantum circuits may not be directly executed on quantum hardware, and a quantum compiler needs to perform qubit routing to make the circuit compatible with the device layout. During the qubit routing step, the compiler inserts SWAP gates and performs circuit transformations. Given the connectivity topology of the target hardware, there are typically multiple qubit routing candidates. The state-of-the-art compilers use a cost function to evaluate the number of SWAP gates for different routes and then select the one with the minimum number of SWAP gates. After qubit routing, the quantum compiler performs gate optimizations upon the circuit with the newly inserted SWAP gates. In this paper, we observe that the aforementioned qubit routing is not optimal, and qubit routing should not be independent on subsequent gate optimizations. We find that with the consideration of gate optimizations, not all of the SWAP gates have the same basis-gate cost. These insights lead to the development of our qubit routing algorithm, NASSC (Not All Swaps have the Same Cost). NASSC is the first algorithm that considers the subsequent optimizations during the routing step. Our optimization-aware qubit routing leads to better routing decisions and benefits subsequent optimizations. We also propose a new optimization-aware decomposition for the inserted SWAP gates. Our experiments show that the routing overhead compiled with our routing algorithm is reduced by up to 69.30% (21.30% on average) in the number of CNOT gates and up to 43.50% (7.61% on average) in the circuit depth compared with the state-of-the-art scheme, SABRE.  more » « less
Award ID(s):
2120757
PAR ID:
10341802
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Quantum computing is gaining momentum in revolutionizing the way we approach complex problem-solving. However, the practical implementation of quantum algorithms remains a significant challenge due to the error-prone and hardware limits of near-term quantum devices. For instance, physical qubit connections are limited, which necessitates the use of quantum SWAP gates to dynamically transform the logical topology during execution. In addition, to optimize fidelity, it is essential to ensure that 1) the allocated hardware has a low error rate and 2) the number of SWAP gates injected into the circuit is minimized. To address these challenges, we propose a suite of algorithms: the Fidelity-aware Graph Extraction Algorithm (FGEA) is used to identify the hardware region with the lowest probability of error, the Frequency-based Mapping Algorithm (FMA) allocates logical-physical qubits that reduce the potential distance of topological transformation, and the Heuristic Routing Algorithm (HRA) searches for an optimal swapping injection strategy. We evaluate the proposed algorithms on the IBM-provided Noisy Intermediate-Scale Quantum (NISQ) computer, using a dataset consisting of 17 different quantum circuits of various sizes. The circuits are executed on the IBM Toronto Falcon processor. The three proposed algorithms outperform the existing SABRE algorithm in reducing the number of SWAP gates required. Therefore, our proposed algorithms hold significant promise in enhancing the fidelity and reducing the number of SWAP gates required in implementing Quantum algorithms. 
    more » « less
  2. Neutral atom arrays have become a promising platform for quantum computing, especially the field programmable qubit array (FPQA) endowed with the unique capability of atom movement. This feature allows dynamic alterations in qubit connectivity during runtime, which can reduce the cost of executing long-range gates and improve parallelism. However, this added flexibility introduces new challenges in circuit compilation. Inspired by the placement and routing strategies for FPGAs, we propose to map all data qubits to fixed atoms while utilizing movable atoms to route for 2-qubit gates between data qubits. Coined flying ancillas, these mobile atoms function as ancilla qubits, dynamically generated and recycled during execution. We present Q-Pilot, a scalable compiler for FPQA employing flying ancillas to maximize circuit parallelism. For two important quantum applications, quantum simulation and the Quantum Approximate Optimization Algorithm (QAOA), we devise domain-specific routing strategies. In comparison to alternative technologies such as superconducting devices or fixed atom arrays, Q-Pilot effectively harnesses the flexibility of FPQA, achieving reductions of 1.4x, 27.7x, and 6.3x in circuit depth for 100-qubit random, quantum simulation, and QAOA circuits, respectively. 
    more » « less
  3. The Swap gate is a ubiquitous tool for moving information on quantum hardware, yet it can be considered a classical operation because it does not entangle product states. Genuinely quantum operations could outperform Swap for the task of permuting qubits within an architecture, which we call routing. We consider quantum routing in two models: (1) allowing arbitrary two-qubit unitaries, or (2) allowing Hamiltonians with norm-bounded interactions. We lower bound the circuit depth or time of quantum routing in terms of spectral properties of graphs representing the architecture interaction constraints, and give a generalized upper bound for all simple connected $$n$$-vertex graphs. In particular, we give conditions for a superpolynomial classical-quantum routing separation, which exclude graphs with a small spectral gap and graphs of bounded degree. Finally, we provide examples of a quadratic separation between gate-based and Hamiltonian routing models with a constant number of local ancillas per qubit and of an $$\Omega(n)$$ speedup if we also allow fast local interactions. 
    more » « less
  4. In the current noisy intermediate-scale quantum (NISQ) Era, Quantum Computing faces significant challenges due to noise, which severely restricts the application of computing complex algorithms. Superconducting quantum chips, one of the pioneer quantum computation technologies, introduce additional noise when moving qubits to adjacent locations for operation on designated two-qubit gates. The current compilers rely on decision models that either count the swap gates or multiply the gate errors when choosing swap paths at the routing stage. Our research has unveiled the overlooked situations for error propagations through the circuit, leading to accumulations that may affect the final output. In this paper, we propose Error Propagation-Aware Routing (EPAR), designed to enhance the compilation performance by considering accumulated errors in routing. EPAR’s effectiveness is validated through benchmarks on a 27-qubit machine and two simulated systems with different topologies. The results indicate an average success rate improvement of 10% on both real and simulated heavy hex lattice topologies, along with a 16% enhancement in a mesh topology simulation. These findings underscore the potential of EPAR to advance quantum computing in the NISQ era substantially. 
    more » « less
  5. The current phase of quantum computing is in the Noisy Intermediate-Scale Quantum (NISQ) era. On NISQ devices, two-qubit gates such as CNOTs are much noisier than single-qubit gates, so it is essential to minimize their count. Quantum circuit synthesis is a process of decomposing an arbitrary unitary into a sequence of quantum gates, and can be used as an optimization tool to produce shorter circuits to improve overall circuit fidelity. However, the time-to-solution of synthesis grows exponentially with the number of qubits. As a result, synthesis is intractable for circuits on a large qubit scale. In this paper, we propose a hierarchical, block-by-block opti-mization framework, QGo, for quantum circuit optimization. Our approach allows an exponential cost optimization to scale to large circuits. QGo uses a combination of partitioning and synthesis: 1) partition the circuit into a sequence of independent circuit blocks; 2) re-generate and optimize each block using quantum synthesis; and 3) re-compose the final circuit by stitching all the blocks together. We perform our analysis and show the fidelity improvements in three different regimes: small-size circuits on real devices, medium-size circuits on noisy simulations, and large-size circuits on analytical models. Our technique can be applied after existing optimizations to achieve higher circuit fidelity. Using a set of NISQ benchmarks, we show that QGo can reduce the number of CNOT gates by 29.9% on average and up to 50% when compared with industrial compiler optimizations such as t|ket). When executed on the IBM Athens system, shorter depth leads to higher circuit fidelity. We also demonstrate the scalability of our QGo technique to optimize circuits of 60+ qubits, Our technique is the first demonstration of successfully employing and scaling synthesis in the compilation tool chain for large circuits. Overall, our approach is robust for direct incorporation in production compiler toolchains to further improve the circuit fidelity. 
    more » « less