Augmented reality (AR) interfaces increasingly utilize artificial intelligence systems to tailor content and experiences to the user. We explore the effects of one such system — a recommender system for online shopping — which allows customers to view personalized product recommendations in the physical spaces where they might be used. We describe results of a [Formula: see text] condition exploratory study in which recommendation quality was varied across three user interface types. Our results highlight potential differences in user perception of the recommended objects in an AR environment. Specifically, users rate product recommendations significantly higher in AR and in a 3D browser interface, and show a significant increase in trust in the recommender system, compared to a web interface with 2D product images. Through semi-structured interviews, we gather participant feedback which suggests AR interfaces perform better due to their ability to view products within the physical context where they will be used.
more »
« less
Effects of Interfaces on Human-Robot Trust: Specifying and Visualizing Physical Zones
In this paper we investigate the influence interfaces and feedback have on human-robot trust levels when operating in a shared physical space. The task we use is specifying a “no-go” region for a robot in an indoor environment. We evaluate three styles of interface (physical, AR, and map-based) and four feedback mechanisms (no feedback, robot drives around the space, an AR “fence”, and the region marked on the map). Our evaluation looks at both usability and trust. Specifically, if the participant trusts that the robot “knows” where the no-go region is and their confidence in the robot's ability to avoid that region. We use both self-reported and indirect measures of trust and usability. Our key findings are: 1) interfaces and feedback do influence levels of trust; 2) the participants largely preferred a mixed interface-feedback pair, where the modality for the interface differed from the feedback.
more »
« less
- PAR ID:
- 10342168
- Date Published:
- Journal Name:
- International Conference on Robotics and Automation
- Page Range / eLocation ID:
- 11265 to 11271
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Objective: Despite advances in human-machine interface design, we lack the ability to give people precise and fast control over high degree of freedom (DOF) systems, like robotic limbs. Attempts to improve control often focus on the static map that links user input to device commands; hypothesizing that the user’s skill acquisition can be improved by finding an intuitive map. Here we investigate what map features affect skill acquisition. Methods: Each of our 36 participants used one of three maps that translated their 19-dimensional finger movement into the 5 robot joints and used the robot to pick up and move objects. The maps were each constructed to maximize a different control principle to reveal what features are most critical for user performance. 1) Principal Components Analysis to maximize the linear capture of finger variance, 2) our novel Egalitarian Principal Components Analysis to maximize the equality of variance captured by each component and 3) a Nonlinear Autoencoder to achieve both high variance capture and less biased variance allocation across latent dimensions Results: Despite large differences in the mapping structures there were no significant differences in group performance. Conclusion: Participants’ natural aptitude had a far greater effect on performance than the map. Significance: Robot-user interfaces are becoming increasingly common and require new designs to make them easier to operate. Here we show that optimizing the map may not be the appropriate target to improve operator skill. Therefore, further efforts should focus on other aspects of the robot-user-interface such as feedback or learning environment.more » « less
-
Perceived social agency-the perception of a robot as an autonomous and intelligent social other-is important for fostering meaningful and engaging human-robot interactions. While end-user programming (EUP) enables users to customize robot behavior, enhancing usability and acceptance, it can also potentially undermine the robot's perceived social agency. This study explores the trade-offs between user control over robot behavior and preserving the robot's perceived social agency, and how these factors jointly impact user experience. We conducted a between-subjects study (N = 57) where participants customized the robot's behavior using either a High-Granularity Interface with detailed block-based programming, a Low-Granularity Interface with broader input-form customizations, or no EUP at all. Results show that while both EUP interfaces improved alignment with user preferences, the Low-Granularity Interface better preserved the robot's perceived social agency and led to a more engaging interaction. These findings highlight the need to balance user control with perceived social agency, suggesting that moderate customization without excessive granularity may enhance the overall satisfaction and acceptance of robot products.more » « less
-
null (Ed.)As collaborative robots become increasingly widespread in manufacturing settings, there is a greater need for tools and interfaces to support operators who integrate, supervise, and troubleshoot these systems. In this paper, we present an application of the Robot Attention Demand (RAD) metric for use in the design of user interfaces to support operators in collaborative manufacturing scenarios. Building on prior work that introduced RAD, we designed and implemented prototype timeline and countdown-timer interfaces to be used within a collaborative assembly-inspection task where an operator is also responsible for a separate sorting task. We performed a user evaluation to investigate the effects of displaying predictive RAD information on operator performance and perceptions of the task. Our results show lower perceived task load and increased usability scores compared to baseline condition without an interface. These findings suggest that predictive RAD should be used by designers and engineers developing operator interfaces for collaborative robot applications in manufacturing.more » « less
-
From automated customer support to virtual assistants, conversational agents have transformed everyday interactions, yet despite phenomenal progress, no agent exists for programming tasks. To understand the design space of such an agent, we prototyped PairBuddy—an interactive pair programming partner—based on research from conversational agents, software engineering, education, human-robot interactions, psychology, and artificial intelligence. We iterated PairBuddy’s design using a series of Wizard-of-Oz studies. Our pilot study of six programmers showed promising results and provided insights toward PairBuddy’s interface design. Our second study of 14 programmers was positively praised across all skill levels. PairBuddy’s active application of soft skills—adaptability, motivation, and social presence—as a navigator increased participants’ confidence and trust, while its technical skills—code contributions, just-in-time feedback, and creativity support—as a driver helped participants realize their own solutions. PairBuddy takes the first step towards an Alexa-like programming partner.more » « less
An official website of the United States government

