skip to main content


Title: Enhanced clamshell swimming with asymmetric beating at low Reynolds number
A single flexible filament can be actuated to escape from the scallop theorem and generate net propulsion at low Reynolds number. In this work, we study the dynamics of a simple boundary-driven multi-filament swimmer, a two-arm clamshell actuated at the hinged point, using a nonlocal slender body approximation with hydrodynamic interactions. We first consider an elastic clamshell consisted of flexible filaments with intrinsic curvature, and then build segmental models consisted of rigid segments connected by different mechanical joints with different forms of response torques. The simplicity of the system allows us to fully explore the effect of various parameters on the swimming performance. Optimal included angles and elastoviscous numbers are identified. The segmental models capture the characteristic dynamics of the elastic clamshell. We further demonstrate how the swimming performance can be significantly enhanced by the asymmetric beating patterns induced by biased torques.  more » « less
Award ID(s):
2004469
NSF-PAR ID:
10342493
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Soft Matter
Volume:
18
Issue:
18
ISSN:
1744-683X
Page Range / eLocation ID:
3605 to 3612
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Some micro-organisms and artificial micro-swimmers propel at low Reynolds numbers (Re) via the interaction of their flexible appendages with the surrounding fluid. While their locomotion has been extensively studied with a Newtonian fluid assumption, in realistic biological environments these micro-swimmers invariably encounter rheologically complex fluids. In particular, many biological fluids such as blood and different types of mucus have shear-thinning viscosities. The influence of this ubiquitous non-Newtonian rheology on the performance of flexible swimmers remains largely unknown. Here, we present a first study to examine how shear-thinning rheology alters the fluid-structure interaction and hence the propulsion performance of elastic swimmers at low Re. Via a simple elastic swimmer actuated magnetically, we demonstrate that shear-thinning rheology can either enhance or hinder elastohydrodynamic propulsion, depending on the intricate interplay between elastic and viscous forces as well as the magnetic actuation. We also use a reduced-order model to elucidate the mechanisms underlying the enhanced and hindered propulsion observed in different physical regimes. These results and improved understanding could guide the design of flexible micro-swimmers in non-Newtonian fluids. 
    more » « less
  2. We conduct experiments with flexible swimmers to address the impact of fluid viscoelasticity on their locomotion. The swimmers are composed of a magnetic head actuated in rotation by a frequency-controlled magnetic field and a flexible tail whose deformation leads to forward propulsion. We consider both viscous Newtonian and glucose-based Boger fluids with similar viscosities. We find that the elasticity of the fluid systematically enhances the locomotion speed of the swimmer and that this enhancement increases with Deborah number. Using particle image velocimetry to visualize the flow field, we find a significant difference in the amount of shear between the rear and leading parts of the swimmer head. We conjecture that viscoelastic normal stresses lead to a net elastic forces in the swimming direction and thus a faster swimming speed.

     
    more » « less
  3. Magnetically-actuated swimming microrobots are an emerging tool for navigating and manipulating materials in confined spaces. Recent work has demonstrated that it is possible to build such systems at the micro and nanoscales using polymer microspheres, magnetic particles and DNA nanotechnology. However, while these materials enable an unprecedented ability to build at small scales, such systems often demonstrate significant polydispersity resulting from both the material variations and the assembly process itself. This variability makes it difficult to predict, let alone optimize, the direction or magnitude of microswimmer velocity from design parameters such as link shape or aspect ratio. To isolate questions of a swimmer's design from variations in its physical dimensions, we present a novel experimental platform using two-photon polymerization to build a two-link, buoyant milliswimmer with a fully customizable shape and integrated flexible linker (the swimmer is underactuated, enabling asymmetric cyclic motion and net translation). Our approach enables us to control both swimming direction and repeatability of swimmer performance. These studies provide ground truth data revealing that neither the first order nor second order models currently capture the key features of milliswimmer performance. We therefore use our experimental platform to develop design guidelines for tuning the swimming speeds, and we identify the following three approaches for increasing speed: (1) tuning the actuation frequency for a fixed aspect ratio, (2) adjusting the aspect ratio given a desired range of operating frequencies, and (3) using the weaker value of linker stiffness from among the values that we tested, while still maintaining a robust connection between the links. We also find experimentally that spherical two-link swimmers with dissimilar link diameters achieve net velocities comparable to swimmers with cylindrical links, but that two-link spherical swimmers of equal diameter do not. 
    more » « less
  4. null (Ed.)
    In this work we investigate the effects of two distinct actuation methods on the hydrodynamics of elastic rectangular plates oscillating at resonance. Plates are driven by plunging motion at the root or actuated by a distributed internal bending moment at Reynolds numbers between 500 and 4000. The latter actuation method represents internally actuated smart materials and emulates the natural ability of swimming animals to continuously change their shapes with muscles. We conduct experiments with plunging elastic plates and piezoelectric plate actuators that are simulated using a fully coupled three-dimensional computational model based on the lattice Boltzmann method. After experimental validation the computational model is employed to probe plate hydrodynamics for a wide range of parameters, including large oscillation amplitudes which prompts nonlinear effects. The comparison between the two actuation methods reveals that, for the same level of tip deflection, externally actuated plates significantly outperform internally actuated plates in terms of thrust production and hydrodynamic efficiency. The reduced performance of internally actuated plates is associated with their suboptimal bending shapes which leads to a trailing edge geometry with enhanced vorticity generation and viscous dissipation. Furthermore, the difference in actuation methods impacts the inertia coefficient characterizing the plate oscillations, especially for large amplitudes. It is found that the inertia coefficient strongly depends on the tip deflection amplitude and the Reynolds number, and actuation method, especially for larger amplitudes. 
    more » « less
  5. Microorganisms often navigate a complex environment composed of a viscous fluid with suspended microstructures such as elastic polymers and filamentous networks. These microstructures can have similar length scales to the microorganisms, leading to complex swimming dynamics. Some microorganisms secrete enzymes that dynamically change the elastic properties of the viscoelastic networks through which they move. In addition to biological organisms, microrobots have been engineered with the goals of mucin gel penetration or dissolving blood clots. In order to gain insight into the coupling between swimming performance and network remodeling, we used a regularized Stokeslet boundary element method to compute the motion of a microswimmer consisting of a rotating spherical body and counter-rotating helical flagellum. The viscoelastic network is represented by a network of points connected by virtual elastic linkages immersed in a viscous fluid. Here, we model the enzymatic dissolution of the network by bacteria or microrobots by dynamically breaking elastic linkages when the cell body of the swimmer falls within a given distance from the link. We investigate the swimming performance of the microbes as they penetrate and move through networks of different material properties, and also examine the effect of network remodeling. 
    more » « less