skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Diel streamflow cycles suggest more sensitive snowmelt-driven streamflow to climate change than land surface modeling does
Abstract. Climate warming will cause mountain snowpacks to melt earlier, reducing summer streamflow and threatening water supplies and ecosystems. Quantifying how sensitive streamflow timing is to climate change and where it is most sensitive remain key questions. Physically based hydrological models are often used for this purpose; however, they have embedded assumptions that translate into uncertain hydrological projections that need to be quantified and constrained to provide reliable inferences. The purpose of this study is to evaluate differences in projected end-of-century changes to streamflow timing between a new empirical model based on diel (daily) streamflow cycles and regional land surface simulations across the mountainous western USA. We develop an observational technique for detecting streamflow responses to snowmelt using diel cycles of incoming solar radiation and streamflow to detect when snowmelt occurs. We measure the date of the 20th percentile of snowmelt days (DOS20) across 31 western USA watersheds affected by snow, as a proxy for the beginning of snowmelt-initiated streamflow. Historic DOS20 varies from mid-January to late May among our sites, with warmer basins having earlier snowmelt-mediated streamflow. Mean annual DOS20 strongly correlates with the dates of 25 % and 50 % annual streamflow volume (DOQ25 and DOQ50, both R2=0.85), suggesting that a 1 d earlier DOS20 corresponds with a 1 d earlier DOQ25 and 0.7 d earlier DOQ50. Empirical projections of future DOS20 based on a stepwise multiple linear regression across sites and years under the RCP8.5 scenario for the late 21st century show that DOS20 will occur on average 11±4 d earlier per 1 ∘C of warming. However, DOS20 in colder watersheds (mean November–February air temperature, TNDJF<-8 ∘C) is on average 70 % more sensitive to climate change than in warmer watersheds (TNDJF>0 ∘C). Moreover, empirical projections of DOQ25 and DOQ50 based on DOS20 are about four and two times more sensitive to climate change, respectively, than those simulated by a state-of-the-art land surface model (NoahMP-WRF) under the same scenario. Given the importance of changes in streamflow timing for water resources, and the significant discrepancies found in projected streamflow sensitivity, snowmelt detection methods such as DOS20 based on diel streamflow cycles may help to constrain model parameters, improve hydrological predictions, and inform process understanding.  more » « less
Award ID(s):
2012310 1723990
PAR ID:
10342874
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Hydrology and Earth System Sciences
Volume:
26
Issue:
13
ISSN:
1607-7938
Page Range / eLocation ID:
3393 to 3417
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Assessing the uncertainty associated with projections of climate change impacts on hydrological processes can be challenging due to multiple sources of uncertainties within and between climate and hydrological models. Here we compare the effects of parameter uncertainty in a hydrological model to inter-model spread from climate projections on hydrological projections of urban streamflow in response to climate change. Four hourly climate model outputs from the RCP8.5 scenario were used as inputs to a distributed hydrologic model (SWMM) calibrated using a Bayesian approach to summarize uncertainty intervals for both model parameters and streamflow predictions. Continuous simulation of 100 years of streamflow generated 90 % prediction intervals for selected exceedance probabilities and flood frequencies prediction intervals from single climate models were compared to the inter climate model spread resulting from a single calibration of the SWMM model. There will be an increase in future flows with exceedance probabilities of 0.5 %-50 % and 2-year floods for all climate projections and all 21st century periods, for the modeled Ohio (USA) watershed. Floods with return periods of ≥ 5 years increase relative to the historical from mid-century (2046–2070) for most climate projections and parameter sets. Across the four climate models, the 90th percentile increase in flows and floods ranges from 17-108 % and 11–63 % respectively. Using multiple calibration parameter sets and climate projections helped capture the most likely hydrologic outcomes, as well as upper and lower bounds of future predictions. For this watershed, hydrological model parameter uncertainty was large relative to inter climate model spread, for near term moderate to high flows and for many flood frequencies. The uncertainty quantification and comparison approach developed here may be helpful in decision-making and design of engineering infrastructure in urban watersheds. 
    more » « less
  2. Abstract Predicting future streamflow change is essential for water resources management and understanding the impacts of projected climate and land use changes on water availability. The Budyko framework is a useful and computationally efficient tool to model streamflow at larger spatial scales. This study predicts future streamflow changes in 889 watersheds in the contiguous United States based on projected climate and land use changes from 2040 to 2069. The temporal variability of surface water balance controls, represented by the Budykoωparameter, was modeled using multiple linear regression, random forest (RF), and gradient boosting. Results show that RF is the optimal model and can explain >85% of the variance in most watersheds. Relative cumulative moisture surplus, forest coverage, crop land and urban land are the most important variables of the time‐varyingωin most watersheds. There are statistically significant increases in mean annual precipitation, potential evapotranspiration, andωin 2040–2069, as compared to 1950–2005. This leads to a statistically significant decrease in the runoff ratio (Q/P). Streamflow is projected to decrease in the central, southwestern, and southeastern United States and increase in the northeast. These projections of water availability which are based on future climate and land use change scenarios can inform water resources management and adaptation strategies. 
    more » « less
  3. null (Ed.)
    Abstract. In the past decades, data-driven machine-learning (ML) models have emerged as promising tools for short-term streamflow forecasting. Among other qualities, the popularity of ML models for such applications is due to their relative ease in implementation, less strict distributional assumption, and competitive computational and predictive performance. Despite the encouraging results, most applications of ML for streamflow forecasting have been limited to watersheds in which rainfall is the major source of runoff. In this study, we evaluate the potential of random forests (RFs), a popular ML method, to make streamflow forecasts at 1 d of lead time at 86 watersheds in the Pacific Northwest. These watersheds cover diverse climatic conditions and physiographic settings and exhibit varied contributions of rainfall and snowmelt to their streamflow. Watersheds are classified into three hydrologic regimes based on the timing of center-of-annual flow volume: rainfall-dominated, transient, and snowmelt-dominated. RF performance is benchmarked against naïve and multiple linear regression (MLR) models and evaluated using four criteria: coefficient of determination, root mean squared error, mean absolute error, and Kling–Gupta efficiency (KGE). Model evaluation scores suggest that the RF performs better in snowmelt-driven watersheds compared to rainfall-driven watersheds. The largest improvements in forecasts compared to benchmark models are found among rainfall-driven watersheds. RF performance deteriorates with increases in catchment slope and soil sandiness. We note disagreement between two popular measures of RF variable importance and recommend jointly considering these measures with the physical processes under study. These and other results presented provide new insights for effective application of RF-based streamflow forecasting. 
    more » « less
  4. ABSTRACT Solar radiation modification (SRM) is a potential strategy to rapidly mitigate global warming by reflecting more sunlight into space. However, its impact on tropical hydrological cycles remains underexplored. This study investigates the potential effects of SRM on streamflow in the Kelantan River Basin (KRB) by incorporating climate projections from the Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6) into the Soil and Water Assessment Tool plus (SWAT+) model. Results indicate that UKESM1-0-LL and MPI-ESM1-2-LR exhibit higher uncertainty in representing KRB's climate compared to CNRM-ESM2-1 and IPSL-CM6A-LR. Under SSP5-8.5, maximum and minimum temperatures are projected to increase by up to 3.52 °C by the late 21st century, while SRM scenarios may limit warming to 1.72-2.33 °C, similar to 1.96-2.22 °C under SSP2-4.5. The multi-model ensemble mean projected an inverse V-shaped trend in annual precipitation, with a peak in the mid-21st century before declining, except for G6sulfur, which exhibits a steady decrease. Increases in monthly precipitation from November to January during the 2045-2064 period under all evaluated scenarios may intensify flooding in the KRB. Meanwhile, decreases in streamflow during dry months are projected for the periods 2045-2064 and 2065-2085 under G6sulfur, particularly in the middle and upper basins. 
    more » « less
  5. Abstract Warming temperatures and precipitation changes are expected to alter water availability and increase drought stress in western North America, yet uncertainties remain in how concurrent changes in the amount and seasonality of precipitation interact with warming to affect hydrologic partitioning. We combined over a century of streamflow (Q) and climate observations with two decades of tree growth data and remotely sensed vegetation activity to quantify how temperature and precipitation interact to control hydrologic partitioning in the Front Range of Colorado, Boulder Creek Watershed. Temperature and precipitation significantly increased over the last five decades, with precipitation increasing primarily in winter (11.2 mm decade−1) and temperature increasing primarily during the growing season (0.12°C decade−1). In response to wetter winters and warmer summers, streamflow decreased −9.8 mm decade−1, with largest declines occurring during summer and autumn baseflow (−8.4 mm decade−1). Spring warming was associated with increases in episodic, short spring melt events, earlier and slower snowmelt and an increase in fraction of precipitation available to plants (catchment wetting or W). Warming during the growing season resulted in an increase in the fraction of W lost as evapotranspiration (ET), earlier and lower peaks in remotely sensed normalized difference vegetation index (NDVI) and lower tree ring width index (RWI). These analyses highlight that vegetation is becoming increasingly water limited even as increases in precipitation and slower melt increase plant water availability. Further, catchment‐derived metrics like the Horton Index (ET/W) provide insight in to how simultaneous changes in temperature, precipitation and melt impact vegetation across complex watersheds. 
    more » « less