skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Time-reversal-based quantum metrology with many-body entangled states
Linear quantum measurements with independent particles are bounded by the standard quantum limit, which limits the precision achievable in estimating unknown phase parameters. The standard quantum limit can be overcome by entangling the particles, but the sensitivity is often limited by the final state readout, especially for complex entangled many-body states with non-Gaussian probability distributions. Here, by implementing an effective time-reversal protocol in an optically engineered many-body spin Hamiltonian, we demonstrate a quantum measurement with non-Gaussian states with performance beyond the limit of the readout scheme. This signal amplification through a time-reversed interaction achieves the greatest phase sensitivity improvement beyond the standard quantum limit demonstrated to date in any full Ramsey interferometer. These results open the field of robust time-reversal-based measurement protocols offering precision not too far from the Heisenberg limit. Potential applications include quantum sensors that operate at finite bandwidth, and the principle we demonstrate may also advance areas such as quantum engineering, quantum measurements and the search for new physics using optical-transition atomic clocks.  more » « less
Award ID(s):
2016244 1806765
PAR ID:
10343207
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Nature Physics
ISSN:
1745-2473
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent developments in atomic physics have enabled the experimental generation of many-body entangled states to boost the performance of quantum sensors beyond the Standard Quantum Limit (SQL). This limit is imposed by the inherent projection noise of a quantum measurement. In this Perspective article, we describe the commonly used experimental methods to create many-body entangled states to operate quantum sensors beyond the SQL. In particular, we focus on the potential of applying quantum entanglement to state-of-the-art optical atomic clocks. In addition, we present recently developed time-reversal protocols that make use of complex states with high quantum Fisher information without requiring sub-SQL measurement resolution. We discuss the prospects for reaching near-Heisenberg limited quantum metrology based on such protocols. 
    more » « less
  2. Abstract An ensemble of atoms can operate as a quantum sensor by placing atoms in a superposition of two different states. Upon measurement of the sensor, each atom is individually projected into one of the two states. Creating quantum correlations between the atoms, that is entangling them, could lead to resolutions surpassing the standard quantum limit 1–3  set by projections of individual atoms. Large amounts of entanglement 4–6 involving the internal degrees of freedom of laser-cooled atomic ensembles 4–16 have been generated in collective cavity quantum-electrodynamics systems, in which many atoms simultaneously interact with a single optical cavity mode. Here we report a matter-wave interferometer in a cavity quantum-electrodynamics system of 700 atoms that are entangled in their external degrees of freedom. In our system, each individual atom falls freely under gravity and simultaneously traverses two paths through space while entangled with the other atoms. We demonstrate both quantum non-demolition measurements and cavity-mediated spin interactions for generating squeezed momentum states with directly observed sensitivity $$3\,.\,{4}_{-0.9}^{+1.1}$$ 3 . 4 − 0.9 + 1.1  dB and $$2\,.\,{5}_{-0.6}^{+0.6}$$ 2 . 5 − 0.6 + 0.6  dB below the standard quantum limit, respectively. We successfully inject an entangled state into a Mach–Zehnder light-pulse interferometer with directly observed sensitivity $$1\,.\,{7}_{-0.5}^{+0.5}$$ 1 . 7 − 0.5 + 0.5  dB below the standard quantum limit. The combination of particle delocalization and entanglement in our approach may influence developments of enhanced inertial sensors 17,18 , searches for new physics, particles and fields 19–23 , future advanced gravitational wave detectors 24,25 and accessing beyond mean-field quantum many-body physics 26–30 . 
    more » « less
  3. The standard model of particle physics accurately describes all particle physics measurements made so far in the laboratory. However, it is unable to answer many questions that arise from cosmological observations, such as the nature of dark matter and why matter dominates over antimatter throughout the Universe. Theories that contain particles and interactions beyond the standard model, such as models that incorporate supersymmetry, may explain these phenomena. Such particles appear in the vacuum and interact with common particles to modify their properties. For example, the existence of very massive particles whose interactions violate time-reversal symmetry, which could explain the cosmological matter–antimatter asymmetry, can give rise to an electric dipole moment along the spin axis of the electron. No electric dipole moments of fundamental particles have been observed. However, dipole moments only slightly smaller than the current experimental bounds have been predicted to arise from particles more massive than any known to exist. Here we present an improved experimental limit on the electric dipole moment of the electron, obtained by measuring the electron spin precession in a superposition of quantum states of electrons subjected to a huge intramolecular electric field. The sensitivity of our measurement is more than one order of magnitude better than any previous measurement. This result implies that a broad class of conjectured particles, if they exist and time-reversal symmetry is maximally violated, have masses that greatly exceed what can be measured directly at the Large Hadron Collider. 
    more » « less
  4. Abstract Physical realizations of the canonical phase measurement for the optical phase are unknown. Single-shot phase estimation, which aims to determine the phase of an optical field in a single shot, is critical in quantum information processing and metrology. Here we present a family of strategies for single-shot phase estimation of coherent states based on adaptive non-Gaussian, photon counting, measurements with coherent displacements that maximize information gain as the measurement progresses, which have higher sensitivities over the best known adaptive Gaussian strategies. To gain understanding about their fundamental characteristics and demonstrate their superior performance, we develop a comprehensive statistical analysis based on Bayesian optimal design of experiments, which provides a natural description of these non-Gaussian strategies. This mathematical framework, together with numerical analysis and Monte Carlo methods, allows us to determine the asymptotic limits in sensitivity of strategies based on photon counting designed to maximize information gain, which up to now had been a challenging problem. Moreover, we show that these non-Gaussian phase estimation strategies have the same functional form as the canonical phase measurement in the asymptotic limit differing only by a scaling factor, thus providing the highest sensitivity among physically-realizable measurements for single-shot phase estimation of coherent states known to date. This work shines light into the potential of optimized non-Gaussian measurements based on photon counting for optical quantum metrology and phase estimation. 
    more » « less
  5. Phase estimation plays a central role in communications, sensing, and information processing. Quantum correlated states, such as squeezed states, enable phase estimation beyond the shot-noise limit, and in principle approach the ultimate quantum limit in precision, when paired with optimal quantum measurements. However, physical realizations of optimal quantum measurements for optical phase estimation with quantum-correlated states are still unknown. Here we address this problem by introducing an adaptive Gaussian measurement strategy for optical phase estimation with squeezed vacuum states that, by construction, approaches the quantum limit in precision. This strategy builds from a comprehensive set of locally optimal POVMs through rotations and homodyne measurements and uses the Adaptive Quantum State Estimation framework for optimizing the adaptive measurement process, which, under certain regularity conditions, guarantees asymptotic optimality for this quantum parameter estimation problem. As a result, the adaptive phase estimation strategy based on locally-optimal homodyne measurements achieves the quantum limit within the phase interval of [ 0 , π / 2 ) . Furthermore, we generalize this strategy by including heterodyne measurements, enabling phase estimation across the full range of phases from [ 0 , π ) , where squeezed vacuum allows for unambiguous phase encoding. Remarkably, for this phase interval, which is the maximum range of phases that can be encoded in squeezed vacuum, this estimation strategy maintains an asymptotic quantum-optimal performance, representing a significant advancement in quantum metrology. 
    more » « less