- Award ID(s):
- 1828010
- NSF-PAR ID:
- 10345488
- Date Published:
- Journal Name:
- Research
- Volume:
- 2022
- ISSN:
- 2639-5274
- Page Range / eLocation ID:
- 1 to 13
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The ability to construct multiplexed micro-systems for fluid regulation could substantially impact multiple fields, including chemistry, biology, biomedicine, tissue engineering, and soft robotics, among others. 3D printing is gaining traction as a compelling approach to fabricating microfluidic devices by providing unique capabilities, such as 1) rapid design iteration and prototyping, 2) the potential for automated manufacturing and alignment, 3) the incorporation of numerous classes of materials within a single platform, and 4) the integration of 3D microstructures with prefabricated devices, sensing arrays, and nonplanar substrates. However, to widely deploy 3D printed microfluidics at research and commercial scales, critical issues related to printing factors, device integration strategies, and incorporation of multiple functionalities require further development and optimization. In this review, we summarize important figures of merit of 3D printed microfluidics and inspect recent progress in the field, including ink properties, structural resolutions, and hierarchical levels of integration with functional platforms. Particularly, we highlight advances in microfluidic devices printed with thermosetting elastomers, printing methodologies with enhanced degrees of automation and resolution, and the direct printing of microfluidics on various 3D surfaces. The substantial progress in the performance and multifunctionality of 3D printed microfluidics suggests a rapidly approaching era in which these versatile devices could be untethered from microfabrication facilities and created on demand by users in arbitrary settings with minimal prior training.more » « less
-
Additive manufacturing, also known as three-dimensional (3D) printing, is an approach in which a structure may be fabricated layer by layer. For 3D inkjet printing, droplets are ejected from a nozzle and each layer is formed droplet by droplet. Inkjet printing has been widely applied for the fabrication of 3D biological gel structures, but the knowledge of the microscale interactions between printed droplets is still largely elusive. This study aims to elucidate the alginate layer formation process during drop-on-demand inkjet printing using high speed imaging and particle image velocimetry. Droplets are found to impact, spread, and coalesce within a fluid region at the deposition site, forming coherent printed lines within a layer. Interfaces are found to form between printed lines within a layer depending on printing conditions and printing path orientation. The effects of printing conditions on the behavior of droplets during layer formation are discussed and modeled based on gelation dynamics, and recommendations are presented to enable controllable and reliable fabrication of gel structures.more » « less
-
Light- and ink-based 3D printing methods have vastly expanded the design space and geometric complexity of architected ceramics. However, light-based methods are typically confined to a relatively narrow range of preceramic and particle-laden resins, while ink-based methods are limited in geometric complexity due to layerwise assembly. Here, embedded 3D printing is combined with microwave-activated curing to generate architected ceramics with spatially controlled composition in freeform shapes. Aqueous colloidal inks are printed within a support matrix, rapidly cured via microwave-activated polymerization, and subsequently dried and sintered into dense architectures composed of one or more oxide materials. This integrated manufacturing method opens new avenues for the design and fabrication of complex ceramic architectures with programmed composition, density, and form for myriad applications.more » « less
-
Abstract Herein, we describe a 3D printable hydrogel that is capable of removing toxic metal pollutants from aqueous solution. To achieve this, shear‐thinning hydrogels were prepared by blending chitosan with diacrylated Pluronic F‐127 which allows for UV curing after printing. Several hydrogel compositions were tested for their ability to absorb common metal pollutants such as lead, copper, cadmium and mercury, as well as for their printability. These hydrogels displayed excellent metal adsorption with some examples capable of up to 95% metal removal within 30 min. We show that 3D printed hydrogel structures that would be difficult to fabricate by conventional manufacturing methods can adsorb metal ions significantly faster than solid objects, owing to their higher accessible surface areas. © 2019 Society of Chemical Industry
-
Abstract Microneedle arrays show many advantages in drug delivery applications due to their convenience and reduced risk of infection. Compared to other microscale manufacturing methods, 3D printing easily overcomes challenges in the fabrication of microneedles with complex geometric shapes and multifunctional performance. However, due to material characteristics and limitations on printing capability, there are still bottlenecks to overcome for 3D printed microneedles to achieve the mechanical performance needed for various clinical applications. The hierarchical structures in limpet teeth, which are extraordinarily strong, result from aligned fibers of mineralized tissue and protein‐based polymer reinforced frameworks. These structures provide design inspiration for mechanically reinforced biomedical microneedles. Here, a bioinspired microneedle array is fabricated using magnetic field‐assisted 3D printing (MF‐3DP). Micro‐bundles of aligned iron oxide nanoparticles (aIOs) are encapsulated by polymer matrix during the printing process. A bioinspired 3D‐printed painless microneedle array is fabricated, and suitability of this microneedle patch for drug delivery during long‐term wear is demonstrated. The results reported here provide insights into how the geometrical morphology of microneedles can be optimized for the painless drug delivery in clinical trials.