The ability to accurately predict public transit ridership demand benefits passengers and transit agencies. Agencies will be able to reallocate buses to handle under or over-utilized bus routes, improving resource utilization, and passengers will be able to adjust and plan their schedules to avoid overcrowded buses and maintain a certain level of comfort. However, accurately predicting occupancy is a non-trivial task. Various reasons such as heterogeneity, evolving ridership patterns, exogenous events like weather, and other stochastic variables, make the task much more challenging. With the progress of big data, transit authorities now have access to real-time passenger occupancy information for their vehicles. The amount of data generated is staggering. While there is no shortage in data, it must still be cleaned, processed, augmented, and merged before any useful information can be generated. In this paper, we propose the use and fusion of data from multiple sources, cleaned, processed, and merged together, for use in training machine learning models to predict transit ridership. We use data that spans a 2-year period (2020-2022) incorporating transit, weather, traffic, and calendar data. The resulting data, which equates to 17 million observations, is used to train separate models for the trip and stop level prediction. We evaluate our approach on real-world transit data provided by the public transit agency of Nashville, TN. We demonstrate that the trip level model based on Xgboost and the stop level model based on LSTM outperform the baseline statistical model across the entire transit service day.
more »
« less
Neural Architecture and Feature Search for Predicting the Ridership of Public Transportation Routes
Accurately predicting the ridership of public-transit routes provides substantial benefits to both transit agencies, who can dispatch additional vehicles proactively before the vehicles that serve a route become crowded, and to passengers, who can avoid crowded vehicles based on publicly available predictions. The spread of the coronavirus disease has further elevated the importance of ridership prediction as crowded vehicles now present not only an inconvenience but also a public-health risk. At the same time, accurately predicting ridership has become more challenging due to evolving ridership patterns, which may make all data except for the most recent records stale. One promising approach for improving prediction accuracy is to fine-tune the hyper-parameters of machine-learning models for each transit route based on the characteristics of the particular route, such as the number of records. However, manually designing a machine-learning model for each route is a labor-intensive process, which may require experts to spend a significant amount of their valuable time. To help experts with designing machine-learning models, we propose a neural-architecture and feature search approach, which optimizes the architecture and features of a deep neural network for predicting the ridership of a public-transit route. Our approach is based on a randomized local hyper-parameter search, which minimizes both prediction error as well as the complexity of the model. We evaluate our approach on real-world ridership data provided by the public transit agency of Chattanooga, TN, and we demonstrate that training neural networks whose architectures and features are optimized for each route provides significantly better performance than training neural networks whose architectures and features are generic.
more »
« less
- Award ID(s):
- 1952011
- PAR ID:
- 10345606
- Date Published:
- Journal Name:
- 2022 IEEE International Conference on Smart Computing (SMARTCOMP)
- Page Range / eLocation ID:
- 56 to 61
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Public transit in the U.S. has an unsettled future. The onset of the COVID-19 pandemic saw a dramatic decline in transit ridership, with agency operations, and user perceptions of safety changing significantly. However, one new factor beyond the control of agencies is playing an outsized role in transit ridership: the shifting employment patterns in the hybrid work era. Indeed, a lasting and widespread adoption of telework has emerged as a key determinant of individual transit behaviors. This study investigates the impact of teleworking on public transit ridership changes across the different transit services in the Chicago area during the pandemic, employing a random forest machine learning approach applied to large-scale survey data (n = 5637). The use of ensemble machine learning enables a data-driven investigation that is tailored for each of the three main transit service operators in Chicago (Chicago Transit Authority, Metra, and Pace). The analysis reveals that the number of teleworking days per week is a highly significant predictor of lapsed ridership. As a result, commuter-centric transit modes—such as Metra—saw the greatest declines in ridership during the pandemic. The study's findings highlight the need for transit agencies to adapt to the enduring trend of teleworking, considering its implications for future ridership and transportation equity. Policy recommendations include promoting non-commute transit use and addressing the needs of demographic groups less likely to telework. The study contributes to the understanding of how telework trends influence public transit usage and offers insights for transit agencies navigating the post-pandemic world.more » « less
-
Public transit agencies struggle to maintain transit accessibility with reduced resources, unreliable ridership data, reduced vehicle capacities due to social distancing, and reduced services due to driver unavailability. In collaboration with transit agencies from two large metropolitan areas in the USA, we are designing novel approaches for addressing the afore-mentioned challenges by collecting accurate real-time ridership data, providing guidance to commuters, and performing operational optimization for public transit. We estimate rider-ship data using historical automated passenger counting data, conditional on a set of relevant determinants. Accurate ridership forecasting is essential to optimize the public transit schedule, which is necessary to improve current fixed lines with on-demand transit. Also, passenger crowding has been a problem for public transportation since it deteriorates passengers’ wellbeing and satisfaction. During the COVID-19 pandemic, passenger crowding has gained importance since it represents a risk for social distancing violations. Therefore, we are creating optimization models to ensure that social distancing norms can be adequately followed while ensuring that the total demand for transit is met. We will then use accurate forecasts for operational optimization that includes (a) proactive fixed-line schedule optimization based on predicted demand, (b) dispatch of on-demand micro-transit, prioritizing at-risk populations, and (c) allocation of vehicles to transit and cargo trips, considering exigent vehicle maintenance requirements (i.e., disinfection). Finally, this paper presents some initial results from our project regarding the estimation of ridership in public transit.more » « less
-
null (Ed.)Public transit agencies struggle to maintain transit accessibility with reduced resources, unreliable ridership data, reduced vehicle capacities due to social distancing, and reduced services due to driver unavailability. In collaboration with transit agencies from two large metropolitan areas in the USA, we are designing novel approaches for addressing the afore-mentioned challenges by collecting accurate real-time ridership data, providing guidance to commuters, and performing operational optimization for public transit. We estimate rider-ship data using historical automated passenger counting data, conditional on a set of relevant determinants. Accurate ridership forecasting is essential to optimize the public transit schedule, which is necessary to improve current fixed lines with on-demand transit. Also, passenger crowding has been a problem for public transportation since it deteriorates passengers’ wellbeing and satisfaction. During the COVID-19 pandemic, passenger crowding has gained importance since it represents a risk for social distancing violations. Therefore, we are creating optimization models to ensure that social distancing norms can be adequately followed while ensuring that the total demand for transit is met. We will then use accurate forecasts for operational optimization that includes \textit(a) proactive fixed-line schedule optimization based on predicted demand, \textit(b) dispatch of on-demand micro-transit, prioritizing at-risk populations, and \textit(c) allocation of vehicles to transit and cargo trips, considering exigent vehicle maintenance requirements (\textiti.e., disinfection). Finally, this paper presents some initial results from our project regarding the estimation of ridership in public transit.more » « less
-
Inverse problems continue to garner immense interest in the physical sciences, particularly in the context of controlling desired phenomena in non-equilibrium systems. In this work, we utilize a series of deep neural networks for predicting time-dependent optimal control fields, E ( t ), that enable desired electronic transitions in reduced-dimensional quantum dynamical systems. To solve this inverse problem, we investigated two independent machine learning approaches: (1) a feedforward neural network for predicting the frequency and amplitude content of the power spectrum in the frequency domain ( i.e. , the Fourier transform of E ( t )), and (2) a cross-correlation neural network approach for directly predicting E ( t ) in the time domain. Both of these machine learning methods give complementary approaches for probing the underlying quantum dynamics and also exhibit impressive performance in accurately predicting both the frequency and strength of the optimal control field. We provide detailed architectures and hyperparameters for these deep neural networks as well as performance metrics for each of our machine-learned models. From these results, we show that machine learning, particularly deep neural networks, can be employed as cost-effective statistical approaches for designing electromagnetic fields to enable desired transitions in these quantum dynamical systems.more » « less
An official website of the United States government

