skip to main content

Title: Measurement of the anisotropy power spectrum of the radio synchrotron background
ABSTRACT We present the first targeted measurement of the power spectrum of anisotropies of the radio synchrotron background, at 140 MHz, where it is the overwhelmingly dominant photon background. This measurement is important for understanding the background level of radio sky brightness, which is dominated by steep-spectrum synchrotron radiation at frequencies below ν ∼ 0.5 GHz and has been measured to be significantly higher than that produced by known classes of extragalactic sources and most models of Galactic halo emission. We determine the anisotropy power spectrum on scales ranging from 2° to 0.2 arcmin with Low-Frequency Array observations of two 18-deg2 fields – one centred on the Northern hemisphere’s coldest patch of radio sky where the Galactic contribution is smallest and the other offset from that location by 15°. We find that the anisotropy power is higher than that attributable to the distribution of point sources above 100 $\mu$Jy in flux. This level of radio anisotropy power indicates that if it results from point sources, those sources are likely at low fluxes and incredibly numerous, and likely clustered in a specific manner.
Authors:
; ; ; ;
Award ID(s):
1914409 1908960
Publication Date:
NSF-PAR ID:
10345710
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
509
Issue:
1
Page Range or eLocation-ID:
114 to 121
ISSN:
0035-8711
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Low-frequency radio observatories are reaching unprecedented levels of sensitivity in an effort to detect the 21 cm signal from the Cosmic Dawn. High precision is needed because the expected signal is overwhelmed by foreground contamination, largely from so-called diffuse emission—a nonlocalized glow comprising Galactic synchrotron emission and radio galaxies. The impact of this diffuse emission on observations may be better understood through detailed simulations, which evaluate the Radio Interferometry Measurement Equation (RIME) for a given instrument and sky model. Evaluating the RIME involves carrying out an integral over the full sky, which is naturally discretized for point sources but must be approximated for diffuse emission. The choice of integration scheme can introduce errors that must be understood and isolated from the instrumental effects under study. In this paper, we present several analytically defined patterns of unpolarized diffuse sky emission for which the RIME integral is manageable, yielding closed-form or series visibility functions. We demonstrate the usefulness of these RIME solutions for validation by comparing them to simulated data and show that the remaining differences behave as expected with varied sky resolution and baseline orientation and length.

  2. Abstract

    We summarize the second radio synchrotron background workshop, which took place on 2022 June 15–17 in Barolo, Italy. This meeting was convened because available measurements of the diffuse radio zero level continue to suggest that it is several times higher than can be attributed to known Galactic and extragalactic sources and processes, rendering it the least well-understood electromagnetic background at present and a major outstanding question in astrophysics. The workshop agreed on the next priorities for investigations of this phenomenon, which include searching for evidence of the radio Sunyaev–Zel’dovich effect, carrying out cross-correlation analyses of radio emission with other tracers, and supporting the completion of the 310 MHz absolutely calibrated sky map project.

  3. Abstract

    We test the merger-induced dual active galactic nuclei (dAGNs) paradigm using a sample of 35 radio galaxy pairs from the Sloan Digital Sky Survey Stripe 82 field. Using Keck optical spectroscopy, we confirm 21 pairs have consistent redshifts, constituting kinematic pairs; the remaining 14 pairs are line-of-sight projections. We classify the optical spectral signatures via emission line ratios, equivalent widths, and excess of radio power above star formation predicted outputs. We find six galaxies are classified as LINERs and seven are AGN/starburst composites. Most of the LINERs are retired galaxies, while the composites likely have AGN contribution. All of the kinematic pairs exhibit radio power more than 10× above the level expected from just star formation, suggestive of a radio AGN contribution. We also analyze high-resolution (0.″3) imaging at 6 GHz from the NSF’s Karl G. Jansky Very Large Array for 17 of the kinematic pairs. We find six pairs (two new, four previously known) host two separate radio cores, confirming their status as dAGNs. The remaining 11 pairs contain single AGNs, with most exhibiting prominent jets/lobes overlapping their companion. Our final census indicates a dAGN duty cycle slightly higher than predictions of purely stochastic fueling, although a largermore »sample (potentially culled from VLASS) is needed to fully address the dAGN fraction. We conclude that while dAGNs in the Stripe 82 field are rare, the merger process plays some role in their triggering and it facilitates low to moderate levels of accretion.

    « less
  4. ABSTRACT Over ∼150 resolved, kpc-scale X-ray jets hosted by active galactic nuclei have been discovered with the Chandra X-ray Observatory. A significant fraction of these jets have an X-ray spectrum either too high in flux or too hard to be consistent with the high-energy extension of the radio-to-optical synchrotron spectrum, a subtype we identify as Multiple Spectral Component (MSC) X-ray jets. A leading hypothesis for the origin of the X-rays is the inverse-Compton scattering of the cosmic microwave background by the same electron population producing the radio-to-optical synchrotron spectrum (known as the IC/CMB model). In this work, we test the IC/CMB model in 45 extragalactic X-ray jets using observations from the Fermi Large Area Telescope to look for the expected high level of gamma-ray emission, utilizing observations from the Atacama Large Millimeter/submillimeter Array (ALMA) and the Hubble Space Telescope (HST) when possible to best constrain the predicted gamma-ray flux. Including this and previous works, we now find the IC/CMB model to be ruled out in a total of 24/45 MSC X-ray jets due to its over-prediction for the observed MeV-to-GeV gamma-ray flux. We present additional evidence against the IC/CMB model, including the relative X-ray-to-radio relativistic beaming in these sources, andmore »the general mismatch between radio and X-ray spectral indexes. Finally, we present upper limits on the large-scale bulk-flow Lorentz factors for all jets based on the Fermi upper limits, which suggest that these jets are at most mildly relativistic.« less
  5. Abstract The High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory surveys the very high-energy sky in the 300 GeV to >100 TeV energy range. HAWC has detected two blazars above 11 σ , Markarian 421 (Mrk 421) and Markarian 501 (Mrk 501). The observations are comprised of data taken in the period between 2015 June and 2018 July, resulting in ∼1038 days of exposure. In this work, we report the time-averaged spectral analyses for both sources, above 0.5 TeV. Taking into account the flux attenuation due to the extragalactic background light, the intrinsic spectrum of Mrk 421 is described by a power law with an exponential energy cutoff with index α = 2.26 ± 0.12 stat − 0.2 + 0.17 sys and energy cutoff E c = 5.1 ± 1.6 stat − 2.5 + 1.4 sys TeV, while the intrinsic spectrum of Mrk 501 is better described by a simple power law with index α = 2.61 ± 0.11 stat − 0.07 + 0.01 sys . The maximum energies at which the Mrk 421 and Mrk 501 signals are detected are 9 and 12 TeV, respectively. This makes these some of the highest energy detections to date for spectra averaged overmore »years-long timescales. Since the observation of gamma radiation from blazars provides information about the physical processes that take place in their relativistic jets, it is important to study the broadband spectral energy distributions (SEDs) of these objects. For this purpose, contemporaneous data in the gamma-ray band to the X-ray range, and literature data in the radio to UV range, were used to build time-averaged SEDs that were modeled within a synchrotron-self Compton leptonic scenario.« less