skip to main content


Title: The Davis–Chandrasekhar–Fermi method revisited
ABSTRACT Despite the rich observational results on interstellar magnetic fields in star-forming regions, it is still unclear how dynamically significant the magnetic fields are at varying physical scales, because direct measurement of the field strength is observationally difficult. The Davis–Chandrasekhar–Fermi (DCF) method has been the most commonly used method to estimate the magnetic field strength from polarization data. It is based on the assumption that gas turbulent motion is the driving source of field distortion via linear Alfvén waves. In this work, using MHD simulations of star-forming clouds, we test the validity of the assumption underlying the DCF method by examining its accuracy in the real 3D space. Our results suggest that the DCF relation between turbulent kinetic energy and magnetic energy fluctuation should be treated as a statistical result instead of a local property. We then develop and investigate several modifications to the original DCF method using synthetic observations, and propose new recipes to improve the accuracy of DCF-derived magnetic field strength. We further note that the biggest uncertainty in the DCF analysis may come from the linewidth measurement instead of the polarization observation, especially since the line-of-sight gas velocity can be used to estimate the gas volume density, another critical parameter in the DCF method.  more » « less
Award ID(s):
1815784
NSF-PAR ID:
10345801
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
514
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
1575 to 1594
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Interaction of three-dimensional magnetic fields, turbulence, and self-gravity in the molecular cloud is crucial in understanding star formation but has not been addressed so far. In this work, we target the low-mass star-forming region L1688 and use the spectral emissions of 12CO, 13CO, C18O, and H i, as well as polarized dust emissions. To obtain the 3D direction of the magnetic field, we employ the novel polarization fraction analysis. In combining with the plane-of-the-sky (POS) magnetic field strength derived from the Davis–Chandrasekhar–Fermi (DCF) method and the new differential measure analysis (DMA) technique, we present the first measurement of L1688’s three-dimensional magnetic field, including its orientation and strength. We find that L1688’s magnetic field has two statistically different inclination angles. The low-intensity tail has an inclination angle ≈55° on average, while that of the central dense clump is ≈30°. We find the global mean value of total magnetic field strength is Btot ≈ $135 \,\mathrm{\mu }{\rm G}$ from DCF and Btot ≈ $75 \,\mathrm{\mu }{\rm G}$ from DMA. We use the velocity gradient technique (VGT) to separate the magnetic fields’ POS orientation associated with L1688 and its foreground/background. The magnetic fields’ orientations are statistically coherent. The probability density function of H2 column density and VGT reveal that L1688 is potentially undergoing gravitational contraction at large scale ≈1.0 pc and gravitational collapse at small scale ≈0.2 pc. The gravitational contraction mainly along the magnetic field resulting in an approximate power-law relation $B_{\rm tot}\propto n_{\rm H}^{1/2}$ when volume density nH is less than approximately 6.0 × 103 cm−3.

     
    more » « less
  2. Abstract

    The mean plane-of-sky magnetic field strength is traditionally obtained from the combination of polarization and spectroscopic data using the Davis–Chandrasekhar–Fermi (DCF) technique. However, we identify the major problem of the DCF technique to be its disregard of the anisotropic character of MHD turbulence. On the basis of the modern MHD turbulence theory we introduce a new way of obtaining magnetic field strength from observations. Unlike the DCF technique, the new technique uses not the dispersion of the polarization angle and line-of-sight velocities, but increments of these quantities given by the structure functions. To address the variety of astrophysical conditions for which our technique can be applied, we consider turbulence in both media with magnetic pressure higher than the gas pressure, corresponding, e.g., to molecular clouds, and media with gas pressure higher than the magnetic pressure, corresponding to the warm neutral medium. We provide general expressions for arbitrary admixtures of Alfvén, slow, and fast modes in these media and consider in detail particular cases relevant to diffuse media and molecular clouds. We successfully test our results using synthetic observations obtained from MHD turbulence simulations. We demonstrate that our differential measure approach, unlike the DCF technique, can be used to measure the distribution of magnetic field strengths, can provide magnetic field measurements with limited data, and is much more stable in the presence of induced large-scale variations of nonturbulent nature. Furthermore, our study uncovers the deficiencies of earlier DCF research.

     
    more » « less
  3. Context. The role of large-scale magnetic fields in the evolution of star-forming regions remains elusive. Its investigation requires the observational characterization of well-constrained molecular clouds. The Monoceros OB 1 molecular cloud is a large complex containing several structures that have been shown to be engaged in an active interaction and to have a rich star formation history. However, the magnetic fields in this region have only been studied on small scales. Aims. We study the large-scale magnetic field structure and its interplay with the gas dynamics in the Monoceros OB 1 east molecular cloud. Methods. We combined observations of dust polarized emission from the Planck telescope and CO molecular line emission observations from the Taeduk Radio Astronomy Observatory 14-metre telescope. We calculated the strength of the plane-of-sky magnetic field using a modified Chandrasekhar-Fermi method and estimated the mass-over-flux ratios in different regions of the cloud. We used the comparison of the velocity and intensity gradients of the molecular line observations with the polarimetric observations to trace dynamically active regions. Results. The molecular complex shows an ordered large-scale plane-of-sky magnetic field structure. In the northern part, it is mostly orientated along the filamentary structures, while the southern part shows at least two regions with distinct magnetic field orientations. Our analysis reveals a shock region in the northern part right between two filamentary clouds that, in previous studies, were suggested to be involved in a collision. The magnetic properties of the north-main and north-eastern filaments suggest that these filaments once formed a single one, and that the magnetic field evolved together with the material and did not undergo major changes during the evolution of the cloud. In the southern part, we find that either the magnetic field guides the accretion of interstellar matter towards the cloud or it is dragged by the matter falling towards the main cloud. Conclusions. The large-scale magnetic field in the Monoceros OB 1 east molecular cloud is tightly connected to the global structure of the complex. In the northern part, it seems to serve a dynamically important role by possibly providing support against gravity in the direction perpendicular to the field and to the filament. In the southern part, it is probably the most influential factor governing the morphological structure by guiding possible gas inflow. A study of the whole Monoceros OB 1 molecular complex at large scales is necessary to form a global picture of the formation and evolution of the Monoceros OB 1 east cloud and the role of the magnetic field in this process. 
    more » « less
  4. Abstract We have obtained sensitive dust continuum polarization observations at 850 μ m in the B213 region of Taurus using POL-2 on SCUBA-2 at the James Clerk Maxwell Telescope as part of the B -fields in STar-forming Region Observations (BISTRO) survey. These observations allow us to probe magnetic field ( B -field) at high spatial resolution (∼2000 au or ∼0.01 pc at 140 pc) in two protostellar cores (K04166 and K04169) and one prestellar core (Miz-8b) that lie within the B213 filament. Using the Davis–Chandrasekhar–Fermi method, we estimate the B -field strengths in K04166, K04169, and Miz-8b to be 38 ± 14, 44 ± 16, and 12 ± 5 μ G, respectively. These cores show distinct mean B -field orientations. The B -field in K04166 is well ordered and aligned parallel to the orientations of the core minor axis, outflows, core rotation axis, and large-scale uniform B -field, in accordance with magnetically regulated star formation via ambipolar diffusion taking place in K04166. The B -field in K04169 is found to be ordered but oriented nearly perpendicular to the core minor axis and large-scale B -field and not well correlated with other axes. In contrast, Miz-8b exhibits a disordered B -field that shows no preferred alignment with the core minor axis or large-scale field. We found that only one core, K04166, retains a memory of the large-scale uniform B -field. The other two cores, K04169 and Miz-8b, are decoupled from the large-scale field. Such a complex B -field configuration could be caused by gas inflow onto the filament, even in the presence of a substantial magnetic flux. 
    more » « less
  5. ABSTRACT

    Large-scale magnetic fields in the nuclear regions of protogalaxies can promote the formation and early growth of supermassive black holes (SMBHs) by direct collapse and magnetically boosted accretion. Turbulence associated with gravitational infall and star formation can drive the rms field strength toward equipartition with the mean gas kinetic energy; this field has a generic tendency to self-organize into large coherent structures. If the poloidal component of the field (relative to the rotational axis of a star-forming disc) becomes organized on scales ≲r and attains an energy of order a few per cent of the turbulent energy in the disc, then dynamo effects are expected to generate magnetic torques capable of increasing the inflow speed and thickening the disc. The accretion flow can transport matter towards the centre of mass at a rate adequate to create and grow a massive direct-collapse black hole seed and fuel the subsequent AGN at a high rate, without becoming gravitationally unstable. Fragmentation and star formation are thus suppressed and do not necessarily deplete the mass supply for the accretion flow, in contrast to prevailing models for growing and fuelling SMBHs through disc accretion.

     
    more » « less