skip to main content


Title: Using ABM to Study the Potential of Land Use Change for Mitigation of Food Deserts
Land-use transition is one of the most profound human-induced alterations of the Earth’s system. It can support better land management and decision-making for increasing the yield of food production to fulfill the food needs in a specific area. However, modeling land-use change involves the complexity of human drivers and natural or environmental constraints. This study develops an agent-based model (ABM) for land use transitions using critical indicators that contribute to food deserts. The model’s performance was evaluated using Guilford County, North Carolina, as a case study. The modeling inputs include land covers, climate variability (rainfall and temperature), soil quality, land-use-related policies, and population growth. Studying the interrelationships between these factors can improve the development of effective land-use policies and help responsible agencies and policymakers plan accordingly to improve food security. The agent-based model illustrates how and when individuals or communities could make specific land-cover transitions to fulfill the community’s food needs. The results indicate that the agent-based model could effectively monitor land use and environmental changes to visualize potential risks over time and help the affected communities plan accordingly.  more » « less
Award ID(s):
1824949
NSF-PAR ID:
10347667
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Sustainability
Volume:
14
Issue:
9715
ISSN:
2071-1050
Page Range / eLocation ID:
1-23
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Introduction:As challenges to biodiversity mount, land-use policies have been implemented to balance human needs and the integrity of ecological systems. One such program, Payments for Ecosystem Services (PES), incentivizes resource users to protect ecosystem services and has been implemented around the world to reduce soil erosion, create or improve wildlife habitats, and improve water quality and other environmental goals. The PES policy, at its core, is a concept that aims to capture the reciprocal relationships between human systems and ecological function and process. As such, PES epistemologically embodies a coupled human and natural systems approach.

    Outcomes:Yet, despite this conceptual alignment, the on-the-ground implementation or evaluation of PES typically does not adopt this coupled approach and PES programs have little integration between socioeconomic, sociocultural, human demographic, and ecological elements. To advance the evolution of PES, we consider what and how socioeconomic and ecological factors have been incorporated into PES program implementation and evaluation. We also present a conceptual model to articulate how PES research can capture the reciprocal relationships among socioeconomics, demography, and ecology and discuss the quantitative modeling approaches that can support this conceptual development, i.e., structural equation and agent-based modeling, and latent trajectory models.

    Conclusions:By strengthening the conceptual framework for PES within a coupled human and natural systems approach and identifyinganalytical approaches that can be used to quantify and characterize these complex cross-disciplinary relationships, we aim to support the evolution and advancement of PES, in service of more meaningful and positive outcomes for human well-being and ecological sustainability.

     
    more » « less
  2. Perennial grasslands, including prairie and pasture, have declined with tremendous environmental and social costs. This decline reflects unequal policy support for grasslands and managed grazing compared to row crops. To create a resource for community partners and decision-makers, we reviewed and analyzed the policy tools and implementation capacity that supports and constrains grasslands and managed grazing in the U.S. Upper Midwest. Risk reduction subsidies for corn and soybeans far outpace the support for pasture. Some states lost their statewide grazing specialist when the federal Grazing Lands Conservation Initiative lapsed. The United States Department of Agriculture, Natural Resources Conservation Service support for lands with prescribed grazing practices declined after 2005 but remained relatively steady 2010–2020. These results reveal the policy disadvantage for grasslands and managed grazing in comparison with row crop agriculture for milk and meat production. Grassland and grazing policies have an important nexus with water quality, biodiversity, carbon and outdoor recreation policy. Socially just transitions to well-managed, grazed grasslands require equity-oriented interventions that support community needs. We synthesized recommendations for national and state policy that farmers and other grazing professionals assert would support perennial grasslands and grazing, including changes in insurance, conservation programs, supply chains, land access, and fair labor. These policies would provide critical support for grass-based agriculture and prairies that we hope will help build soil, retain nutrients, reduce flooding and enhance biodiversity while providing healthy food, jobs, and communities. 
    more » « less
  3. Post-disaster housing recovery models increase our understanding of recovery dynamics, vulnerable populations, and how people are affected by the direct losses that disasters create. Past recovery models have focused on single-family owner-occupied housing, while empirical evidence shows that rental units and multi-family housing are disadvantaged in post-disaster recovery. To fill this gap, this article presents an agent-based housing recovery model that includes the four common type–tenure combinations of single- and multi-family owner- and renter-occupied housing. The proposed model accounts for the different recovery processes, emphasizing funding sources available to each type–tenure. The outputs of our model include the timing of financing and recovery at building resolution across a community. We demonstrate the model with a case study of Alameda, California, recovering from a simulated M7.0 earthquake on the Hayward fault. The processes in the model replicate higher non-recovery of multi-family housing than single-family housing, as observed in past disasters, and a heavy reliance of single-family renter-occupied units on Small Business Administration funding, which is expected due to low earthquake insurance penetration. The simulation results indicate that multi-family housing would have the highest portion of unmet need remaining; however, some buildings with unmet needs are anticipated to be able to obtain a large portion of their funding. The remaining portion may be filled using personal financing or may be overcome with downsizing or downgrades. Multi-family housing would also benefit the most from Community Development Block Grants for Disaster Recovery (CDBG-DR). This benefit is a result of modeling the financing sources, that CDBG-DR is available, and that many multi-family buildings do not qualify for other sources. Communities’ allocation of public funding is important for housing recovery. Our model can help inform and compare potential financing policies to allocate public funds.

     
    more » « less
  4. Abstract

    Around the world today, the magnitude and rates of environmental, social, and economic change are undermining the sustainability of many rural societies that rely directly on natural resources for their livelihoods. Sustainable development efforts seek to promote livelihood adaptations that enhance food security and reduce social-ecological vulnerability, but these efforts are hampered by the difficulty of understanding the complexity and dynamism of rural livelihood systems. Disparate research avenues are strengthening our ability to grapple with complexity. But we are only just beginning to find ways to simultaneously account for problematic complexities, including multiscalar feedbacks in the ecosystems that that support livelihoods, the heterogeneous benefits garnered by different segments of society, and the complex contingencies that constrain people’s decisions and capacities to adapt. To provide a more nuanced analysis of the dynamics of transformation in rural livelihood systems, we identified key complementarities between four different research approaches, enabling us to integrate them in a novel research framework that can guide empirical and modeling research on livelihood adaptation. The framework capitalizes upon parallel concepts of sequentiality in (1) ecosystem services and (2) livelihood adaptation scholarship, then incorporates principles from (3) adaptation in social-ecological systems research to account for the dynamism inherent in these often rapidly-transforming systems. Lastly, we include advances in (4) agent-based modeling, which couples human decisions and land use change and provides tools to incorporate complex social-ecological feedbacks in simulation studies of livelihood adaptation. Here we describe the new Ecosystem Services—Livelihood Adaptation (ESLA) framework, explain how it links the contributing approaches, and illustrate its application with two case studies. We offer guidance for its implementation in empirical and modeling research, and conclude with a discussion of current challenges in sustainability science and the contributions that could be gained through research guided by the ESLA framework.

     
    more » « less
  5. Wetlands are often vital physical and social components of a country’s natural capital, as well as providers of ecosystem services to local and national communities. We performed a network analysis to prioritize Sustainable Development Goal (SDG) targets for sustainable development in iconic wetlands and wetlandscapes around the world. The analysis was based on the information and perceptions on 45 wetlandscapes worldwide by 49 wetland researchers of the Global Wetland Ecohydrological Network (GWEN). We identified three 2030 Agenda targets of high priority across the wetlandscapes needed to achieve sustainable development: Target 6.3—“Improve water quality”; 2.4—“Sustainable food production”; and 12.2—“Sustainable management of resources”. Moreover, we found specific feedback mechanisms and synergies between SDG targets in the context of wetlands. The most consistent reinforcing interactions were the influence of Target 12.2 on 8.4—“Efficient resource consumption”; and that of Target 6.3 on 12.2. The wetlandscapes could be differentiated in four bundles of distinctive priority SDG-targets: “Basic human needs”, “Sustainable tourism”, “Environmental impact in urban wetlands”, and “Improving and conserving environment”. In general, we find that the SDG groups, targets, and interactions stress that maintaining good water quality and a “wise use” of wetlandscapes are vital to attaining sustainable development within these sensitive ecosystems. 
    more » « less