This content will become publicly available on December 14, 2022
 Publication Date:
 NSFPAR ID:
 10349424
 Journal Name:
 60th IEEE Conf. Decision and Control
 Page Range or eLocationID:
 1709 to 1714
 Sponsoring Org:
 National Science Foundation
More Like this

We study the classic Maximum Independent Set problem under the notion of stability introduced by Bilu and Linial (2010): a weighted instance of Independent Set is γstable if it has a unique optimal solution that remains the unique optimal solution under multiplicative perturbations of the weights by a factor of at most γ ≥ 1. The goal then is to efficiently recover this “pronounced” optimal solution exactly. In this work, we solve stable instances of Independent Set on several classes of graphs: we improve upon previous results by solving \tilde{O}(∆/sqrt(log ∆))stable instances on graphs of maximum degree ∆, (k − 1)stable instances on kcolorable graphs and (1 + ε)stable instances on planar graphs (for any fixed ε > 0), using both combinatorial techniques as well as LPs and the SheraliAdams hierarchy. For general graphs, we give an algorithm for (εn)stable instances, for any fixed ε > 0, and lower bounds based on the planted clique conjecture. As a byproduct of our techniques, we give algorithms as well as lower bounds for stable instances of Node Multiway Cut (a generalization of Edge Multiway Cut), by exploiting its connections to Vertex Cover. Furthermore, we prove a general structural result showing that themore »

Semidefinite programs (SDPs) often arise in relaxations of some NPhard problems, and if the solution of the SDP obeys certain rank constraints, the relaxation will be tight. Decomposition methods based on chordal sparsity have already been applied to speed up the solution of sparse SDPs, but methods for dealing with rank constraints are underdeveloped. This paper leverages a minimum rank completion result to decompose the rank constraint on a single large matrix into multiple rank constraints on a set of smaller matrices. The reweighted heuristic is used as a proxy for rank, and the specific form of the heuristic preserves the sparsity pattern between iterations. Implementations of rankminimized SDPs through interiorpoint and firstorder algorithms are discussed. The problem of subspace clustering is used to demonstrate the computational improvement of the proposed method.

The traveling salesman problem (TSP) is a fundamental problem in combinatorial optimization. Several semidefinite programming relaxations have been proposed recently that exploit a variety of mathematical structures including, for example, algebraic connectivity, permutation matrices, and association schemes. The main results of this paper are twofold. First, de Klerk and Sotirov [de Klerk E, Sotirov R (2012) Improved semidefinite programming bounds for quadratic assignment problems with suitable symmetry. Math. Programming 133(1):75–91.] present a semidefinite program (SDP) based on permutation matrices and symmetry reduction; they show that it is incomparable to the subtour elimination linear program but generally dominates it on small instances. We provide a family of simplicial TSP instances that shows that the integrality gap of this SDP is unbounded. Second, we show that these simplicial TSP instances imply the unbounded integrality gap of every SDP relaxation of the TSP mentioned in the survey on SDP relaxations of the TSP in section 2 of Sotirov [Sotirov R (2012) SDP relaxations for some combinatorial optimization problems. Anjos MF, Lasserre JB, eds., Handbook on Semidefinite, Conic and Polynomial Optimization (Springer, New York), 795–819.]. In contrast, the subtour linear program performs perfectly on simplicial instances. The simplicial instances thus form a natural litmusmore »

Abstract We consider the problem of covering multiple submodular constraints. Given a finite ground set
N , a weight function ,$$w: N \rightarrow \mathbb {R}_+$$ $w:N\to {R}_{+}$r monotone submodular functions over$$f_1,f_2,\ldots ,f_r$$ ${f}_{1},{f}_{2},\dots ,{f}_{r}$N and requirements the goal is to find a minimum weight subset$$k_1,k_2,\ldots ,k_r$$ ${k}_{1},{k}_{2},\dots ,{k}_{r}$ such that$$S \subseteq N$$ $S\subseteq N$ for$$f_i(S) \ge k_i$$ ${f}_{i}\left(S\right)\ge {k}_{i}$ . We refer to this problem as$$1 \le i \le r$$ $1\le i\le r$MultiSubmodCover and it was recently considered by HarPeled and Jones (Few cuts meet many point sets. CoRR.arxiv:abs1808.03260 HarPeled and Jones 2018) who were motivated by an application in geometry. Even with$$r=1$$ $r=1$MultiSubmodCover generalizes the wellknown Submodular Set Cover problem (SubmodSC ), and it can also be easily reduced toSubmodSC . A simple greedy algorithm gives an approximation where$$O(\log (kr))$$ $O(log(kr\left)\right)$ and this ratio cannot be improved in the general case. In this paper, motivated by several concrete applications, we consider two ways to improve upon the approximation given by the greedy algorithm. First, we give a bicriteria approximation algorithm for$$k = \sum _i k_i$$ $k={\sum}_{i}{k}_{i}$MultiSubmodCover that covers each constraint to within a factor of while incurring an approximation of$$(11/e\varepsilon )$$ $(11/e\epsilon )$ in the cost. Second, we consider the special case when each$$O(\frac{1}{\epsilon }\log r)$$ $O(\frac{1}{\u03f5}logr)$ is a obtained from a truncated coverage function and obtain an algorithm that generalizes previous work on partial set cover ($$f_i$$ ${f}_{i}$PartialSC ), covering integer programs (CIPs ) and multiple vertex cover constraintsmore » 
We present alfonso, an opensource Matlab package for solving conic optimization problems over nonsymmetric convex cones. The implementation is based on the authors’ corrected analysis of a method of Skajaa and Ye. It enables optimization over any convex cone as long as a logarithmically homogeneous selfconcordant barrier is available for the cone or its dual. This includes many nonsymmetric cones, for example, hyperbolicity cones and their duals (such as sumofsquares cones), semidefinite and secondorder cone representable cones, power cones, and the exponential cone. Besides enabling the solution of problems that cannot be cast as optimization problems over a symmetric cone, algorithms for nonsymmetric conic optimization also offer performance advantages for problems whose symmetric cone programming representation requires a large number of auxiliary variables or has a special structure that can be exploited in the barrier computation. The worstcase iteration complexity of alfonso is the best known for nonsymmetric cone optimization: [Formula: see text] iterations to reach an εoptimal solution, where ν is the barrier parameter of the barrier function used in the optimization. Alfonso can be interfaced with a Matlab function (supplied by the user) that computes the Hessian of a barrier function for the cone. A simplified interface ismore »