The ever increasing size of deep neural network (DNN) models once implied that they were only limited to cloud data centers for runtime inference. Nonetheless, the recent plethora of DNN model compression techniques have successfully overcome this limit, turning into a reality that DNN-based inference can be run on numerous resource-constrained edge devices including mobile phones, drones, robots, medical devices, wearables, Internet of Things devices, among many others. Naturally, edge devices are highly heterogeneous in terms of hardware specification and usage scenarios. On the other hand, compressed DNN models are so diverse that they exhibit different tradeoffs in a multi-dimension space, and not a single model can achieve optimality in terms of all important metrics such as accuracy, latency and energy consumption. Consequently, how to automatically select a compressed DNN model for an edge device to run inference with optimal quality of experience (QoE) arises as a new challenge. The state-of-the-art approaches either choose a common model for all/most devices, which is optimal for a small fraction of edge devices at best, or apply device-specific DNN model compression, which is not scalable. In this paper, by leveraging the predictive power of machine learning and keeping end users in the loop, we envision an automated device-level DNN model selection engine for QoE-optimal edge inference. To concretize our vision, we formulate the DNN model selection problem into a contextual multi-armed bandit framework, where features of edge devices and DNN models are contexts and pre-trained DNN models are arms selected online based on the history of actions and users' QoE feedback. We develop an efficient online learning algorithm to balance exploration and exploitation. Our preliminary simulation results validate our algorithm and highlight the potential of machine learning for automating DNN model selection to achieve QoE-optimal edge inference.
more »
« less
EF-Train: Enable Efficient On-device CNN Training on FPGA through Data Reshaping for Online Adaptation or Personalization
Conventionally, DNN models are trained once in the cloud and deployed in edge devices such as cars, robots, or unmanned aerial vehicles (UAVs) for real-time inference. However, there are many cases that require the models to adapt to new environments, domains, or users. In order to realize such domain adaption or personalization, the models on devices need to be continuously trained on the device. In this work, we design EF-Train, an efficient DNN training accelerator with a unified channel-level parallelism-based convolution kernel that can achieve end-to-end training on resource-limited low-power edge-level FPGAs. It is challenging to implement on-device training on resource-limited FPGAs due to the low efficiency caused by different memory access patterns among forward and backward propagation and weight update. Therefore, we developed a data reshaping approach with intra-tile continuous memory allocation and weight reuse. An analytical model is established to automatically schedule computation and memory resources to achieve high energy efficiency on edge FPGAs. The experimental results show that our design achieves 46.99 GFLOPS and 6.09 GFLOPS/W in terms of throughput and energy efficiency, respectively.
more »
« less
- Award ID(s):
- 2122320
- PAR ID:
- 10351238
- Date Published:
- Journal Name:
- ACM Transactions on Design Automation of Electronic Systems
- Volume:
- 27
- Issue:
- 5
- ISSN:
- 1084-4309
- Page Range / eLocation ID:
- 1 to 36
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Mobile or FPGA? A Comprehensive Evaluation on Energy Efficiency and a Unified Optimization FrameworkEfficient deployment of Deep Neural Networks (DNNs) on edge devices (i.e., FPGAs and mobile platforms) is very challenging, especially under a recent witness of the increasing DNN model size and complexity. Model compression strategies, including weight quantization and pruning, are widely recognized as effective approaches to significantly reduce computation and memory intensities, and have been implemented in many DNNs on edge devices. However, most state-of-the-art works focus on ad-hoc optimizations, and there lacks a thorough study to comprehensively reveal the potentials and constraints of different edge devices when considering different compression strategies. In this paper, we qualitatively and quantitatively compare the energy efficiency of FPGA-based and mobile-based DNN executions using mobile GPU and provide a detailed analysis. Based on the observations obtained from the analysis, we propose a unified optimization framework using block-based pruning to reduce the weight storage and accelerate the inference speed on mobile devices and FPGAs, achieving high hardware performance and energy-efficiency gain while maintaining accuracy.more » « less
-
With the emergence of wearable devices and other embedded systems, deploying large language models (LLMs) on edge platforms has become an urgent need. However, this is challenging because of their high computational and memory demands. Although recent low-bit quantization methods (e.g., BitNet, DeepSeek) compress weights to as low as 1.58~bits with minimal accuracy loss, edge deployment is still constrained by limited on-chip resources, power budgets, and the often-neglected long latency of the prefill stage. We present TeLLMe, the first table-lookup-based ternary LLM accelerator for low-power edge FPGAs that fully supports both prefill and autoregressive decoding using 1.58-bit weights and 8-bit activations. TeLLMe incorporates several novel techniques, including (1) a table-lookup-based ternary matrix multiplication (TLMM) engine utilizing grouped activations and online precomputation for low resource utilization and high throughput; (2) a fine-grained analytic URAM-based weight buffer management scheme for efficient loading and compute engine access; (3) a streaming dataflow architecture that fuses floating-point element-wise operations with linear computations to hide latency; (4) a reversed-reordered prefill stage attention with fused attention operations for high memory efficiency; and (5) a resource-efficient specialized decoding stage attention. Under a 5~W power budget, TeLLMe delivers up to 25~tokens/s decoding throughput and 0.45--0.96~s time-to-first-token (TTFT) for 64--128 token prompts, marking a significant energy-efficiency advancement in LLM inference on edge FPGAs.more » « less
-
Abstract The constant drive to achieve higher performance in deep neural networks (DNNs) has led to the proliferation of very large models. Model training, however, requires intensive computation time and energy. Memristor‐based compute‐in‐memory (CIM) modules can perform vector‐matrix multiplication (VMM) in place and in parallel, and have shown great promises in DNN inference applications. However, CIM‐based model training faces challenges due to non‐linear weight updates, device variations, and low‐precision. In this work, a mixed‐precision training scheme is experimentally implemented to mitigate these effects using a bulk‐switching memristor‐based CIM module. Low‐precision CIM modules are used to accelerate the expensive VMM operations, with high‐precision weight updates accumulated in digital units. Memristor devices are only changed when the accumulated weight update value exceeds a pre‐defined threshold. The proposed scheme is implemented with a system‐onchip of fully integrated analog CIM modules and digital sub‐systems, showing fast convergence of LeNet training to 97.73%. The efficacy of training larger models is evaluated using realistic hardware parameters and verifies that CIM modules can enable efficient mix‐precision DNN training with accuracy comparable to full‐precision software‐trained models. Additionally, models trained on chip are inherently robust to hardware variations, allowing direct mapping to CIM inference chips without additional re‐training.more » « less
-
Nowadays, one practical limitation of deep neural network (DNN) is its high degree of specialization to a single task or domain (e.g., one visual domain). It motivates researchers to develop algorithms that can adapt DNN model to multiple domains sequentially, while still performing well on the past domains, which is known as multi-domain learning. Almost all conventional methods only focus on improving accuracy with minimal parameter update, while ignoring high computing and memory cost during training, which makes it difficult to deploy multi-domain learning into more and more widely used resource-limited edge devices, like mobile phone, IoT, embedded system, etc. During our study in multi-domain training process, we observe that large memory used for activation storage is the bottleneck that largely limits the training time and cost on edge devices. To reduce training memory usage, while keeping the domain adaption accuracy performance, we propose Dynamic Additive Attention Adaption (DA3), a novel memory-efficient on-device multi-domain learning method. DA3 learns a novel additive attention adaptor module, while freezing the weights of the pre-trained backbone model for each domain. Differentiating from prior works, such module not only mitigates activation memory buffering for reducing memory usage during training, but also serves as a dynamic gating mechanism to reduce the computation cost for fast inference. We validate DA3 on multiple datasets against state-of-the-art methods, which shows great improvement in both accuracy and training time. Moreover, we deployed DA3 into the popular NIVDIA Jetson Nano edge GPU, where the measured experimental results show our proposed \mldam reduces the on-device training memory consumption by 19x-37x, and training time by 2x, in comparison to the baseline methods (e.g., standard fine-tuning, Parallel and Series Res. adaptor, and Piggyback).more » « less
An official website of the United States government

