skip to main content


Title: An Inductor-First Single-Inductor Multiple-Output Hybrid DC-DC Converter With Integrated Flying Capacitor for SoC Applications
With the increasing complexity of highly integrated system on chips (SoCs), the power management system (PMS) is required to provide several power supplies efficiently for individual blocks. This paper presents a single-inductor multiple outputs (SIMO) an inductor-first hybrid converter that generates three outputs between 0.4V and 1.6V from a 1.8V input. The proposed multiple-output hybrid power stage can improve the conversion efficiency by reducing inductor current while extending the output voltage range compared with the existing hybrid topologies. In addition, the proposed converter employs an on-chip switched-capacitor power stage (SCPS) with a dual switching frequency technique, resulting in a fast response time, low cross-regulation, and reduced number of on-chip pads. Measurement results show that the converter achieves a peak efficiency of 87.5% with a maximum output current of 450mA. The converter is integrated with a fast voltage regulation loop with a 500MHz system clock to achieve less than 0.01mA/mV cross-regulation and a maximum 20mV overshoot at full-load transient response. The design is fabricated in the standard 180nm CMOS technology  more » « less
Award ID(s):
2030159
NSF-PAR ID:
10351763
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEE transactions on circuits and systems
ISSN:
1549-8328
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To improve the power delivery in System-on-Chips (SoCs), this paper proposes a single-input-multi-output (SIMO) hybrid converter to obtain fast response time, low cross-regulation, and 87% peak efficiency by using a multi-output hybrid power stage and dual-switching-frequency technique. The multiple-output hybrid power stage improves the conversion efficiency without sacrificing the output voltage range, and the dual-switching-frequency technique enhances the response time and cross-regulation performance. The proposed SIMO hybrid converter achieves 87.5% peak efficiency with an output voltage range from 0.4V to 1.6V for all outputs and a total maximum load current of 450mAAdditionally, it achieves less than 0.01mA/mV cross-regulation and less than 20mV overshoot at full-load step transient response. 
    more » « less
  2. null (Ed.)
    Efficient high-conversion-ratio power delivery is needed for many portable computing applications which require sub-volt supply rails but operate from batteries or USB power sources. In such applications, the power management unit should have a small volume, area, and height while providing fast transient response. Past work has shown favorable performance of hybrid switched-capacitor (SC) converters to reduce the size of needed inductor(s), which can soft-charge high-density SC networks while supporting efficient voltage regulation [1-5]. However, the hybrid approach has its own challenges including balancing the voltage of the flying capacitor and achieving safe but fast startup. Rapid supply transients, including startup, can cause voltage stress on power switches if flying capacitors are not quickly regulated. Past approaches such as precharge networks [3] or fast balancing control [5] have startup times that are on the order of milliseconds. This paper presents a two-stage cascaded hybrid SC converter that features a fast transient response with automatic flying capacitor balancing for low-voltage applications (i.e., 5V:0.4 to 1.2V from a USB interface). The converter is nearly standalone and all gate drive supplies are generated internally. Measured results show a peak efficiency of 96.9%, <; 36mV under/overshoot for 1A/μs load transients, and self-startup time on the order of 10μs (over 100× faster than previous works). 
    more » « less
  3. This paper presents a dual-inductor hybrid (DIH) converter that is capable of efficient non-isolated DC-DC con- versions with extremely large voltage conversion ratios. The converter topology combines a switched-capacitor network and two interleaved inductors, that supports simple duty-cycle control for output regulation. In order to achieve complete soft charging for all flying capacitors, a method to optimally size the capacitors has been proposed and verified. A detailed analysis on the two inductor currents revealing a new and simple method to modulate them and its impacts on output regulation and efficiency are also provided and demonstrated in experiments. Employing the converter topology and design methods, a DIH converter prototype is implemented and measured for a wide range of operating voltages, providing a 1V-2V output from a 48-V input and a 1V-5V output from a 150V input with output currents up to 20A. The converter achieves 94.3% peak efficiency at 48V- to-2V/7A conversion and 93.7% at 150V-to-5V/18A conversion. 
    more » « less
  4. This article proposes a matrix auto-transformer switched-capacitor dc–dc converter to achieve a high voltage conversion ratio, high efficiency, and high power density for 48-V data-center applications. On the high-voltage side, the proposed converter can fully leverage the benefits of high-performance low voltage stress devices similar to the multilevel modular switched-capacitor converter. Compared with the traditional isolated LLC converter with a matrix transformer, the proposed solution utilized a matrix autotransformer concept with merged primary and secondary side windings, thus leading to reduced transformer winding loss. The resonant inductor could be integrated into the transformer similar to the LLC converter. Because of the matrix autotransformer design, it can achieve a current doubler rectifier on the low voltage side. For less than 8-V low output voltage application, the current doubler rectifier design can fully utilize the best figure-of-merit 25-V device, which is more efficient than the full-bridge rectifier solution using two 25-V devices during the operation. All the devices can achieve zero voltage switching or zero current switching and can be naturally clamped without additional clamping circuits. A 500-W 48-V to 6-V dc–dc converter hardware prototype has been developed with optimized device selection and integrated matrix autotransformer design. Both simulation and experiment results have been provided to validate the features and benefits of the proposed converter. The maximum efficiency of the proposed converter can reach 98.33%. 
    more » « less
  5. Summary

    Inductive power transfer has become an emerging technology for its significant benefits in many applications, including mobile phones, laptops, electric vehicles, implanted bio‐sensors, and internet of things (IoT) devices. In modern applications, a direct current–direct current (DC–DC) converter is one of the essential components to regulate the output supply voltage for achieving the desired characteristics, that is, steady voltage with lower peak ripples. This paper presents a switched‐capacitor (SC) DC–DC converter using complementary architecture to provide a regulated DC voltage with an increased dynamic response. The proposed topology enhances the converter efficiency by decreasing the equivalent output resistance to half by connecting two symmetric SC single ladder converters. The proposed converter is designed using the standard 130‐nm BiCMOS process. The results show that the proposed architecture produces 327‐mV DC output with a rise time of 60.1 ns and consumes 3.449‐nW power for 1.0‐V DC supply. The output settling time is 43.6% lower than the single‐stage SC DC–DC converter with an input frequency of 200 MHz. The comparison results show that the proposed converter has a higher power conversion efficiency of 93.87%and a lower power density of 0.57 mW/mm2compared to the existing works.

     
    more » « less