skip to main content


Title: Tropical cyclone-blackout-heatwave compound hazard resilience in a changing climate
Abstract Tropical cyclones (TCs) have caused extensive power outages. The impacts of TC-caused blackouts may worsen in the future as TCs and heatwaves intensify. Here we couple TC and heatwave projections and power outage and recovery process analysis to investigate how TC-blackout-heatwave compound hazard risk may vary in a changing climate, with Harris County, Texas as an example. We find that, under the high-emissions scenario RCP8.5, long-duration heatwaves following strong TCs may increase sharply. The expected percentage of Harris residents experiencing at least one longer-than-5-day TC-blackout-heatwave compound hazard in a 20-year period could increase dramatically by a factor of 23 (from 0.8% to 18.2%) over the 21 st century. We also reveal that a moderate enhancement of the power distribution network can significantly mitigate the compound hazard risk. Thus, climate adaptation actions, such as strategically undergrounding distribution network and developing distributed energy sources, are urgently needed to improve coastal power system resilience.  more » « less
Award ID(s):
1652448 2103754
PAR ID:
10353310
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Simultaneous heatwaves affecting multiple regions (referred to as concurrent heatwaves) pose compounding threats to various natural and societal systems, including global food chains, emergency response systems, and reinsurance industries. While anthropogenic climate change is increasing heatwave risks across most regions, the interactions between warming and circulation changes that yield concurrent heatwaves remain understudied. Here, we quantify historical (1979–2019) trends in concurrent heatwaves during the warm season [May–September (MJJAS)] across the Northern Hemisphere mid- to high latitudes. We find a significant increase of ∼46% in the mean spatial extent of concurrent heatwaves and ∼17% increase in their maximum intensity, and an approximately sixfold increase in their frequency. Using self-organizing maps, we identify large-scale circulation patterns (300 hPa) associated with specific concurrent heatwave configurations across Northern Hemisphere regions. We show that observed changes in the frequency of specific circulation patterns preferentially increase the risk of concurrent heatwaves across particular regions. Patterns linking concurrent heatwaves across eastern North America, eastern and northern Europe, parts of Asia, and the Barents and Kara Seas show the largest increases in frequency (∼5.9 additional days per decade). We also quantify the relative contributions of circulation pattern changes and warming to overall observed concurrent heatwave day frequency trends. While warming has a predominant and positive influence on increasing concurrent heatwave frequency, circulation pattern changes have a varying influence and account for up to 0.8 additional concurrent heatwave days per decade. Identifying regions with an elevated risk of concurrent heatwaves and understanding their drivers is indispensable for evaluating projected climate risks on interconnected societal systems and fostering regional preparedness in a changing climate.

    Significance Statement

    Heatwaves pose a major threat to human health, ecosystems, and human systems. Simultaneous heatwaves affecting multiple regions can exacerbate such threats. For example, multiple food-producing regions simultaneously undergoing heat-related crop damage could drive global food shortages. We assess recent changes in the occurrence of simultaneous large heatwaves. Such simultaneous heatwaves are 7 times more likely now than 40 years ago. They are also hotter and affect a larger area. Their increasing occurrence is mainly driven by warming baseline temperatures due to global heating, but changes in weather patterns contribute to disproportionate increases over parts of Europe, the eastern United States, and Asia. Better understanding the drivers of weather pattern changes is therefore important for understanding future concurrent heatwave characteristics and their impacts.

     
    more » « less
  2. Abstract

    Accurate delineation of compound flood hazard requires joint simulation of rainfall‐runoff and storm surges within high‐resolution flood models, which may be computationally expensive. There is a need for supplementing physical models with efficient, probabilistic methodologies for compound flood hazard assessment that can be applied under a range of climate and environment conditions. Here we propose an extension to the joint probability optimal sampling method (JPM‐OS), which has been widely used for storm surge assessment, and apply it for rainfall‐surge compound hazard assessment under climate change at the catchment‐scale. We utilize thousands of synthetic tropical cyclones (TCs) and physics‐based models to characterize storm surge and rainfall hazards at the coast. Then we implement a Bayesian quadrature optimization approach (JPM‐OS‐BQ) to select a small number (∼100) of storms, which are simulated within a high‐resolution flood model to characterize the compound flood hazard. We show that the limited JPM‐OS‐BQ simulations can capture historical flood return levels within 0.25 m compared to a high‐fidelity Monte Carlo approach. We find that the combined impact of 2100 sea‐level rise (SLR) and TC climatology changes on flood hazard change in the Cape Fear Estuary, NC will increase the 100‐year flood extent by 27% and increase inundation volume by 62%. Moreover, we show that probabilistic incorporation of SLR in the JPM‐OS‐BQ framework leads to different 100‐year flood maps compared to using a single mean SLR projection. Our framework can be applied to catchments across the United States Atlantic and Gulf coasts under a variety of climate and environment scenarios.

     
    more » « less
  3. Abstract

    El Niño‐Southern Oscillation (ENSO) can effectively modulate global tropical cyclone (TC) activity, but the role TCs may play in determining ENSO characteristics remains unclear. Here we investigate the impact of TC winds on ENSO using a suite of Earth system model experiments where we insert TC winds, extracted from a TC‐permitting high‐resolution simulation, into a low‐resolution model configuration with nearly no intrinsic TCs. The presence of TC winds in the model increases ENSO power and shifts ENSO frequency closer to what we observe. TCs lead to an increase of strong to extreme El Niño events seen in observations and not simulated in the low‐resolution model without intrinsic TCs, mainly through enhanced zonal advection feedback and thermocline feedback. Our results indicate that TCs play a fundamental role in producing the ENSO characteristics we experience today in the climate system and point to a two‐way climatological interaction between TCs and ENSO.

     
    more » « less
  4. Abstract

    Climate change is expected to increase the global occurrence and intensity of heatwaves, extreme precipitation, and flash droughts. However, it is not well understood how the compound heatwave, extreme precipitation, and flash drought events will likely change, and how global population, agriculture, and forest will likely be exposed to these compound events under future climate change scenarios. This research uses eight CMIP6 climate models to assess the current and future global compound climate extreme events, as well as population, agriculture, and forestry exposures to these events, under two climate scenarios, Shared Socioeconomic Pathways (SSP), SSP1‐2.6 and SSP5‐8.5 for three time periods: early‐, mid‐, and late‐ 21st century. Climate extremes are derived for heatwaves, extreme precipitation, and flash droughts using locational‐dependent thresholds. We find that compound heatwaves and flash drought events result in the largest increases in exposure of populations, agriculture, and forest lands, under SSP5‐8.5 late‐century projections of sequential heatwaves and flash droughts. Late‐century projections of sequential heatwaves and flash droughts show hot spots of exposure increases in population exposure greater than 50 million person‐events in China, India, and Europe; increases in agriculture land exposures greater than 90 thousand km2‐events in China, South America, and Oceania; and increase in forest land exposure greater than 120 thousand km2‐events in Oceania and South America regions when compared to the historical period. The findings from this study can be potentially useful for informing global climate adaptations.

     
    more » « less
  5. Abstract Tropical cyclones (TCs) cause devastating damage to life and property. Historical TC data is scarce, complicating adequate TC risk assessments. Synthetic TC models are specifically designed to overcome this scarcity. While these models have been evaluated on their ability to simulate TC activity, no study to date has focused on model performance and applicability in TC risk assessments. This study performs the intercomparison of four different global-scale synthetic TC datasets in the impact space, comparing impact return period curves, probability of rare events, and hazard intensity distribution over land. We find that the model choice influences the costliest events, particularly in basins with limited TC activity. Modelled direct economic damages in the North Indian Ocean, for instance, range from 40 to 246 billion USD for the 100-yr event over the four hazard sets. We furthermore provide guidelines for the suitability of the different synthetic models for various research purposes. 
    more » « less