skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: uDiscover: User-Driven Service Discovery in Pervasive Edge Computing using NDN
New breed of applications, such as autonomous driving and their need for computation-aided quick decision making has motivated the delegation of compute-intensive services (e.g., video analytic) to the more powerful surrogate machines at the network edge–edge computing (EC). Recently, the notion of pervasive edge computing (PEC) has emerged, in which users’ devices can join the pool of the computing resources that perform edge computing. Inclusion of users’ devices increases the computing capability at the edge (adding to the infrastructure servers), but in comparison to the conventional edge ecosystems, it also introduces new challenges, such as service orchestration (i.e., service placement, discovery, and migration). We propose uDiscover, a novel user-driven service discovery and utilization framework for the PEC ecosystem. In designing uDiscover, we considered the Named-Data Networking architecture for balancing users workloads and reducing user-perceived latency. We propose proactive and reactive service discovery approaches and assess their performance in PEC and infrastructure-only ecosystems. Our simulation results show that (i) the PEC ecosystem reduces the user-perceived delays by up to 70%, and (ii) uDiscover selects the most suitable server–"accurate" delay estimates with less than 10% error–to execute any given task.  more » « less
Award ID(s):
1757207 1914635 2028797 2148358
PAR ID:
10354683
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
2022 IEEE International Conference on Edge Computing and Communications (EDGE)
Page Range / eLocation ID:
77 to 82
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pervasive Edge Computing (PEC), a recent addition to the edge computing paradigm, leverages the computing resources of end-user devices to execute computation tasks in close proximity to users. One of the primary challenges in the PEC environment is determining the appropriate servers for offloading computation tasks based on factors, such as computation latency, response quality, device reliability, and cost of service. Computation outsourcing in the PEC ecosystem requires additional security and privacy considerations. Finally, mechanisms need to be in place to guarantee fair payment for the executed service(s). We present 𝑃𝐸𝑃𝑃𝐸𝑅, a novel, privacy-preserving, and decentralized framework that addresses aforementioned challenges by utilizing blockchain technology and trusted execution environments (TEE). 𝑃𝐸𝑃𝑃𝐸𝑅 improves the performance of PEC by allocating resources among end-users efficiently and securely. It also provides the underpinnings for building a financial ecosystem at the pervasive edge. To evaluate the effectiveness of 𝑃𝐸𝑃𝑃𝐸𝑅, we developed and deployed a proof of concept implementation on the Ethereum blockchain, utilizing Intel SGX as the TEE technology. We propose a simple but highly effective remote attestation method that is particularly beneficial to PEC compared to the standard remote attestation method used today. Our extensive comparison experiment shows that 𝑃𝐸𝑃𝑃𝐸𝑅 is 1.23× to 2.15× faster than the current standard remote attestation procedure. In addition, we formally prove the security of our system using the universal composability (UC) framework. 
    more » « less
  2. Edge Computing is a new computing paradigm where applications operate at the network edge, providing low-latency services with augmented user and data privacy. A desirable goal for edge computing is pervasiveness, that is, enabling any capable and authorized entity at the edge to provide desired edge services--pervasive edge computing (PEC). However, efficient access control of users receiving services and edge servers handling user data, without sacrificing performance is a challenge. Current solutions, based on "always-on" authentication servers in the cloud, negate the latency benefits of services at the edge and also do not preserve user and data privacy. In this paper, we present APECS, an advanced access control framework for PEC, which allows legitimate users to utilize any available edge services without need for communication beyond the network edge. The APECS framework leverages multi-authority attribute-based encryption to create a federated authority, which delegates the authentication and authorization tasks to semi-trusted edge servers, thus eliminating the need for an "always-on" authentication server in the cloud. Additionally, APECS prevents access to encrypted content by unauthorized edge servers. We analyze and prove the security of APECS in the Universal Composability framework and provide experimental results on the GENI testbed to demonstrate the scalability and effectiveness of APECS. 
    more » « less
  3. In the Internet of Things (loT) era, edge computing is a promising paradigm to improve the quality of service for latency sensitive applications by filling gaps between the loT devices and the cloud infrastructure. Highly geo-distributed edge computing resources that are managed by independent and competing service providers pose new challenges in terms of resource allocation and effective resource sharing to achieve a globally efficient resource allocation. In this paper, we propose a novel blockchain-based model for allocating computing resources in an edge computing platform that allows service providers to establish resource sharing contracts with edge infrastructure providers apriori using smart contracts in Ethereum. The smart contract in the proposed model acts as the auctioneer and replaces the trusted third-party to handle the auction. The blockchain-based auctioning protocol increases the transparency of the auction-based resource allocation for the participating edge service and infrastructure providers. The design of sealed bids and bid revealing methods in the proposed protocol make it possible for the participating bidders to place their bids without revealing their true valuation of the goods. The truthful auction design and the utility-aware bidding strategies incorporated in the proposed model enables the edge service providers and edge infrastructure providers to maximize their utilities. We implement a prototype of the model on a real blockchain test bed and our extensive experiments demonstrate the effectiveness, scalability and performance efficiency of the proposed approach. 
    more » « less
  4. null (Ed.)
    Due to the proliferation of Internet of Things (IoT) and application/user demands that challenge communication and computation, edge computing has emerged as the paradigm to bring computing resources closer to users. In this paper, we present Whispering, an analytical model for the migration of services (service offloading) from the cloud to the edge, in order to minimize the completion time of computational tasks offloaded by user devices and improve the utilization of resources. We also empirically investigate the impact of reusing the results of previously executed tasks for the execution of newly received tasks (computation reuse) and propose an adaptive task offloading scheme between edge and cloud. Our evaluation results show that Whispering achieves up to 35% and 97% (when coupled with computation reuse) lower task completion times than cases where tasks are executed exclusively at the edge or the cloud. 
    more » « less
  5. The prevailing network security measures are often implemented on proprietary appliances that are deployed at fixed network locations with constant capacity. Such a rigid deployment is sometimes necessary, but undermines the flexibility of security services in meeting the demands of emerging applications, such as augmented/virtual reality, autonomous driving, and 5G for industry 4.0, which are provoked by the evolution of connected and smart devices, their heterogeneity, and integration with cloud and edge computing infrastructures. To loosen these rigid security deployments, in this paper, we propose a data-centric SECurity-as-a-Service (SECaaS) framework for elastic deployment and provisioning of security services at the Multi-Access Edge Computing (MEC) infrastructure. In particular, we discuss three security services that are suitable for edge deployment: (i) an intrusion detection and prevention system (IDPS), (ii) an access control enforcement system (ACE), and (iii) a communication anonymization service (CA). We benchmark the common security microservices along with the design and implementation of a proof of concept communication anonymization application. 
    more » « less