skip to main content


Title: Event-triggered Scheduling and Control Co-design for Networked Control Systems with Sub-schedulability
We propose a new concept named subschedulability to relax schedulability conditions on task sets in the context of scheduling and control co-design. Subschedulability is less conservative compared to schedulablity requirement with respect to network utilization. But it can still guarantee that all tasks can be executed before or within a bounded time interval after their deadlines. Based on the subschedulability concept, we derive an analytical timing model to check the sub-schedulability and perform online prediction of time-delays caused by real-time scheduling. A modified event-triggered contention-resolving MPC is presented to co-design the scheduling and control for the sub-schedulable control tasks. Simulation results are demonstrated to show the effectiveness of the proposed method.  more » « less
Award ID(s):
1828678 1849228 1934836
NSF-PAR ID:
10359106
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 2022 American Control Conference
Page Range / eLocation ID:
1733 to 1738
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Intermittently-powered devices have gained much interest in recent years. However, scheduling real-time tasks while supporting data consistency, timekeeping, and schedulability guarantees on these devices still remains a challenge. Many sensing tasks need long indivisible sensor reading operations, but most prior work has limited their focus to the forward progress of computation-only tasks. In this paper, we propose a scheduling framework to execute real-time periodic tasks with atomic sensing operations. Our proposed method keeps track of time progress and ensures the periodic execution of sensing tasks while efficiently utilizing intermittent power sources. We provide schedulability analysis to determine if a taskset is schedulable under a given charging condition. As a proof-of-concept, we design a custom programmable RFID tag device, called R’tag, and demonstrate the effectiveness of our framework in a realistic sensing application. Evaluation results show that the proposed method satisfies the real-time task execution requirements on IPDs in terms of task scheduling, timekeeping, and periodic sensing while significantly outperforming prior work. 
    more » « less
  2. Newly emerging multiprocessor system-on-a-chip (MPSoC) platforms provide hard processing cores with programmable logic (PL) for high-performance computing applications. In this article, we take a deep look into these commercially available heterogeneous platforms and show how to design mixed-criticality applications such that different processing components can be isolated to avoid contention on the shared resources such as last-level cache and main memory. Our approach involves software/hardware co-design to achieve isolation between the different criticality domains. At the hardware level, we use a scratchpad memory (SPM) with dedicated interfaces inside the PL to avoid conflicts in the main memory. At the software level, we employ a hypervisor to support cache-coloring such that conflicts at the shared L2 cache can be avoided. In order to move the tasks in/out of the SPM memory, we rely on a DMA engine and propose a new CPU-DMA co-scheduling policy, called Lazy Load, for which we also derive the response time analysis. The results of a case study on image processing demonstrate that the contention on the shared memory subsystem can be avoided when running with our proposed architecture. Moreover, comprehensive schedulability evaluations show that the newly proposed Lazy Load policy outperforms the existing CPU-DMA scheduling approaches and is effective in mitigating the main memory interference in our proposed architecture. 
    more » « less
  3. Many cyber-physical systems are offloading computation-heavy programs to hardware accelerators (e.g., GPU and TPU) to reduce execution time. These applications will self-suspend between offloading data to the accelerators and obtaining the returned results. Previous efforts have shown that self-suspending tasks can cause scheduling anomalies, but none has examined inter-task communication. This paper aims to explore self-suspending tasks' data chain latency with periodic activation and asynchronous message passing. We first present the cause for suspension-induced delays and worst-case latency analysis. We then propose a rule for utilizing the hardware co-processors to reduce data chain latency and schedulability analysis. Simulation results show that the proposed strategy can improve overall latency while preserving system schedulability. 
    more » « less
  4. In this paper, we present RT-Gang: a novel realtime gang scheduling framework that enforces a one-gang-at-atime policy. We find that, in a multicore platform, co-scheduling multiple parallel real-time tasks would require highly pessimistic worst-case execution time (WCET) and schedulability analysis—even when there are enough cores—due to contention in shared hardware resources such as cache and DRAM controller. In RT-Gang, all threads of a parallel real-time task form a real-time gang and the scheduler globally enforces the one-gangat-a-time scheduling policy to guarantee tight and accurate task WCET. To minimize under-utilization, we integrate a state-of-the-art memory bandwidth throttling framework to allow safe execution of best-effort tasks. Specifically, any idle cores, if exist, are used to schedule best-effort tasks but their maximum memory bandwidth usages are strictly throttled to tightly bound interference to real-time gang tasks. We implement RT-Gang in the Linux kernel and evaluate it on two representative embedded multicore platforms using both synthetic and real-world DNN workloads. The results show that RT-Gang dramatically improves system predictability and the overhead is negligible. 
    more » « less
  5. When scheduling multi-mode real-time systems on multi-core platforms, a key question is how to dynamically adjust shared resources, such as cache and memory bandwidth, when resource demands change, without jeopardizing schedulability during mode changes. This paper presents Omni, a first end-to-end solution to this problem. Omni consists of a novel multi-mode resource allocation algorithm and a resource-aware schedulability test that supports general mode-change semantics as well as dynamic cache and bandwidth resource allocation. Omni's resource allocation leverages the platform's concurrency and the diversity of the tasks' demands to minimize overload during mode transitions; it does so by intelligently co-distributing tasks and resources across cores. Omni's schedulability test ensures predictable mode transitions, and it takes into account mode-change effects on the resource demands on different cores, so as to best match their dynamic needs using the available resources. We have implemented a prototype of Omni, and we have evaluated it using randomly generated multi-mode systems with several real-world benchmarks as the workload. Our results show that Omni has low overhead, and that it is substantially more effective in improving schedulability than the state of the art 
    more » « less