skip to main content


Title: In-process monitoring and prediction of droplet quality in droplet-on-demand liquid metal jetting additive manufacturing using machine learning
Abstract

In droplet-on-demand liquid metal jetting (DoD-LMJ) additive manufacturing, complex physical interactions govern the droplet characteristics, such as size, velocity, and shape. These droplet characteristics, in turn, determine the functional quality of the printed parts. Hence, to ensure repeatable and reliable part quality it is necessary to monitor and control the droplet characteristics. Existing approaches for in-situ monitoring of droplet behavior in DoD-LMJ rely on high-speed imaging sensors. The resulting high volume of droplet images acquired is computationally demanding to analyze and hinders real-time control of the process. To overcome this challenge, the objective of this work is to use time series data acquired from an in-process millimeter-wave sensor for predicting the size, velocity, and shape characteristics of droplets in DoD-LMJ process. As opposed to high-speed imaging, this sensor produces data-efficient time series signatures that allows rapid, real-time process monitoring. We devise machine learning models that use the millimeter-wave sensor data to predict the droplet characteristics. Specifically, we developed multilayer perceptron-based non-linear autoregressive models to predict the size and velocity of droplets. Likewise, a supervised machine learning model was trained to classify the droplet shape using the frequency spectrum information contained in the millimeter-wave sensor signatures. High-speed imaging data served as ground truth for model training and validation. These models captured the droplet characteristics with a statistical fidelity exceeding 90%, and vastly outperformed conventional statistical modeling approaches. Thus, this work achieves a practically viable sensing approach for real-time quality monitoring of the DoD-LMJ process, in lieu of the existing data-intensive image-based techniques.

 
more » « less
Award ID(s):
1752069 2020246
NSF-PAR ID:
10370559
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of Intelligent Manufacturing
Volume:
33
Issue:
7
ISSN:
0956-5515
Page Range / eLocation ID:
p. 2093-2117
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Liquid droplet impact is a subject that has been investigated in both engineering and non-engineering applications to understand and to control this phenomenon. Spray cooling, ink-jet printing, spray coating and painting, soil erosion prevention, pesticide application, and impact erosion are merely a few examples in which droplet impact is involved. Erosion caused by droplet impact on a solid surface is important in numerous elements of industrial equipment, such as pipelines, steam turbines, and wind turbine blades. Though experimental and modeling studies have been performed on this topic, most failed to perform quantitative investigation especially when it came to the erosion of wind turbine blades. Moreover, most approaches assume that the impacting droplets are completely spherical and unaffected by any local turbulence or vortex shedding. As the droplet erosion process could be affected by several parameters, such as the impact velocity, shape and size of the droplets, this study focuses on investigating droplet properties and movement in a controlled lab environment. High speed imaging and Particle Image Velocimetry (PIV) methods are used for this purpose. PIV is used to measure the velocity, circularity, and size of the falling droplets in both disturbed and un-disturbed flow conditions. High-speed camera imaging provides additional insight to the path of the droplets’ movement in the presence of any turbulence. Experiments are performed at a variety of flow rates utilizing a range of blunt needle gauge sizes to create different droplet sizes. It is observed that the blunt needles produce a train of droplets that are different in size following each leading droplet. This is a crucial observation as it will have a direct impact on the magnitude of erosion and should be considered in the future modeling efforts. 
    more » « less
  2. null (Ed.)
    Condensation figure (CF) is a simple and cost-effective method to inspect patterns and defects on product surfaces. This inspection method is based on energy differentials on surfaces. Due to wettability contrast, water droplets are preferentially nucleated and grown on hydrophilic regions. The formed CF can further be segmented for the recognition and measurement of the patterns on the surfaces. The state-of-the-art CF methods are closeenvironmental, while controlled open-environmental CF has broader applications in manufacturing and quality inspection. The lack of open-environmental CF for such applications is mostly because of the unavailable droplet size control methods. In this paper, we designed a high-resolution optical surface inspection system based on open environment droplet-size-controlled CFs. This is done by real-time imaging and recognizing the condensed droplet sizes and densities on surfaces, and accordingly tuning the vaporization and evaporation of droplets on the surface by the vapor flow rate. Our experimental results show that the average diameter of droplets can be controlled below 3.5 µm in a laboratory setup for different metal substrates. We also test the system for inspecting self-assembled monolayer patterns with linewidth of 5 µm on a gold surface; this can be promisingly used for online quality monitoring and in-process control of printed patterns in flexible devices manufacturing. 
    more » « less
  3. We present high-resolution three-dimensional (3-D) direct numerical simulations of breaking waves solving for the two-phase Navier–Stokes equations. We investigate the role of the Reynolds number ( Re , wave inertia relative to viscous effects) and Bond number ( Bo , wave scale over the capillary length) on the energy, bubble and droplet statistics of strong plunging breakers. We explore the asymptotic regimes at high Re and Bo , and compare with laboratory breaking waves. Energetically, the breaking wave transitions from laminar to 3-D turbulent flow on a time scale that depends on the turbulent Re up to a limiting value $Re_\lambda \sim 100$ , consistent with the mixing transition in other canonical turbulent flows. We characterize the role of capillary effects on the impacting jet and ingested main cavity shape and subsequent fragmentation process, and extend the buoyant-energetic scaling from Deike et al. ( J. Fluid Mech. , vol. 801, 2016, pp. 91–129) to account for the cavity shape and its scale separation from the Hinze scale, $r_H$ . We confirm two regimes in the bubble size distribution, $N(r/r_H)\propto (r/r_H)^{-10/3}$ for $r>r_H$ , and $\propto (r/r_H)^{-3/2}$ for $r more » « less
  4. Droplet impacts on solid surfaces produce a wide variety of phenomena such as spreading, splashing, jetting, receding, and rebounding. In microholed surfaces, downward jets through the hole can be caused by the high impact inertia during the spreading phase of the droplet over the substrate as well as the cavity collapse during recoil phase of the droplet. We investigate the dynamics of the jet formed through the single hole during the impacting phase of the droplet on a micro-holed hydrophilic substrate. The sub-millimeter circular holes are created on the 0.2 mm-thickness hydrophilic plastic films using a 0.5 mm punch. Great care has been taken to ensure that the millimeter-sized droplets of water dispensed by a syringe pump through a micropipette tip can impact directly over the micro-holes. A high-speed video photography camera is employed to capture the full event of impacting and jetting. A MATLAB code has been developed to process the captured videos for data analysis. We study the effect of impact velocity on the jet formation including jet velocity, ejected droplet volume, and breakup process. We find that the Weber number significantly affects outcomes of the drop impact and jetting mechanism. We also examine the dynamic contact angle of the contact line during the spreading and the receding phase. 
    more » « less
  5. Abstract

    The significance of respiratory droplet transmission in spreading respiratory diseases such as COVID-19 has been identified by researchers. Although one cough or sneeze generates a large number of respiratory droplets, they are usually infrequent. In comparison, speaking and singing generate fewer droplets, but occur much more often, highlighting their potential as a vector for airborne transmission. However, the flow dynamics of speech and the transmission of speech droplets have not been fully investigated. To shed light on this topic, two-dimensional geometries of a vocal tract for a labiodental fricative [f] were generated based on real-time MRI of a subject during pronouncing [f]. In these models, two different curvatures were considered for the tip tongue shape and the lower lip to highlight the effects of the articulator geometries on transmission dynamics. The commercial ANSYS-Fluent CFD software was used to solve the complex expiratory speech airflow trajectories. Simultaneously, the discrete phase model of the software was used to track submicron and large size respiratory droplets exhaled during [f] utterance. The simulations were performed for high, normal, and low lung pressures to explore the influence of loud, normal, and soft utterances, respectively, on the airflow dynamics. The presented results demonstrate the variability of the airflow and droplet propagation as a function of the vocal tract geometrical characteristics and loudness.

     
    more » « less