skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Measuring the Hubble constant with double gravitational wave sources in pulsar timing
ABSTRACT Pulsar timing arrays (PTAs) are searching for gravitational waves from supermassive black hole binaries (SMBHBs). Here we show how future PTAs could use a detection of gravitational waves from individually resolved SMBHB sources to produce a purely gravitational wave-based measurement of the Hubble constant. This is achieved by measuring two separate distances to the same source from the gravitational wave signal in the timing residual: the luminosity distance DL through frequency evolution effects, and the parallax distance Dpar through wavefront curvature (Fresnel) effects. We present a generalized timing residual model including these effects in an expanding universe. Of these two distances, Dpar is challenging to measure due to the pulsar distance wrapping problem, a degeneracy in the Earth-pulsar distance and gravitational wave source parameters that requires highly precise, sub-parsec level, pulsar distance measurements to overcome. However, in this paper we demonstrate that combining the knowledge of two SMBHB sources in the timing residual largely removes the wrapping cycle degeneracy. Two sources simultaneously calibrate the PTA by identifying the distances to the pulsars, which is useful in its own right, and allow recovery of the source luminosity and parallax distances which results in a measurement of the Hubble constant. We find that, with optimistic PTAs in the era of the Square Kilometre Array, two fortuitous SMBHB sources within a few hundred Mpc could be used to measure the Hubble constant with a relative uncertainty on the order of 10 per cent.  more » « less
Award ID(s):
1912649 2207728
PAR ID:
10373449
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
517
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 1242-1263
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Merging supermassive black hole binaries produce low-frequency gravitational waves, which pulsar timing experiments are searching for. Much of the current theory is developed within the plane-wave formalism, and here we develop the more general Fresnel formalism. We show that Fresnel corrections to gravitational wave timing residual models allow novel measurements to be made, such as direct measurements of the source distance from the timing residual phase and frequency, as well as direct measurements of chirp mass from a monochromatic source. Probing the Fresnel corrections in these models will require future pulsar timing arrays with more distant pulsars across our Galaxy (ideally at the distance of the Magellanic Clouds), timed with precisions less than 100 ns, with distance uncertainties reduced to the order of the gravitational wavelength. We find that sources with chirp mass of order 109 M⊙ and orbital frequency ω0 > 10 nHz are good candidates for probing Fresnel corrections. With these conditions met, the measured source distance uncertainty can be made less than 10 per cent of the distance to the source for sources out to ∼100 Mpc, source sky localization can be reduced to sub-arcminute precision, and source volume localization can be made to less than 1 Mpc3 for sources out to 1-Gpc distances. 
    more » « less
  2. Gravitational waves are ripples in the fabric of spacetime that are caused by events such as the merging of black holes. In principle, many types of events occur that could create gravitational waves with frequencies ranging from as high as a few kilohertz to as low as a few nanohertz. Sources of gravitational waves in the nanohertz frequency range include cosmic strings, quantum fluctuations from the early Universe, and, notably, supermassive black hole binaries (SMBHBs). Some gravitational wave sources are so numerous that they are all expected to contribute to a gravitational wave background (GWB). This GWB has been the target of pulsar timing arrays (PTAs) for decades. 
    more » « less
  3. Abstract Pulsar timing arrays (PTAs) are Galactic-scale gravitational wave (GW) detectors consisting of precisely timed pulsars distributed across the sky. Within the decade, PTAs are expected to detect nanohertz GWs emitted by close-separation supermassive black hole binaries (SMBHBs), thereby opening up the low-frequency end of the GW spectrum for science. Individual SMBHBs which power active galactic nuclei are also promising multi-messenger sources; they may be identified via theoretically predicted electromagnetic (EM) signatures and be followed up by PTAs for GW observations. In this work, we study the detection and parameter estimation prospects of a PTA which targets EM-selected SMBHBs. Adopting a simulated Galactic millisecond pulsar population, we envisage three different pulsar timing campaigns which observe three mock sources at different sky locations. We find that an all-sky PTA which times the best pulsars is an optimal and feasible approach to observe EM-selected SMBHBs and measure their source parameters to high precision (i.e., comparable to or better than conventional EM measurements). We discuss the implications of our findings in the context of future PTA experiments with the planned Deep Synoptic Array-2000 and the multi-messenger studies of SMBHBs such as the well-known binary candidate OJ 287. 
    more » « less
  4. Abstract Pulsar distances are notoriously difficult to measure, and play an important role in many fundamental physics experiments, such as pulsar timing arrays. Here, we perform a cross-match between International PTA pulsars (IPTA) and Gaia's Data Release 2 (DR2) and Data Release 3 (DR3). We then combine the IPTA pulsar’s parallax with its binary companion’s parallax, found in Gaia, to improve the distance measurement to the binary. We find seven cross-matched IPTA pulsars in Gaia DR2, and when using Gaia DR3 we find six IPTA pulsar cross-matches but with seven Gaia objects. Moving from Gaia DR2 to Gaia DR3, we find that the Gaia parallaxes for the successfully cross-matched pulsars improved by 53%, and pulsar distances improved by 29%. Finally, we find that binary companions with a <3.0σdetection are unreliable associations, setting a high bar for successful cross-matches. 
    more » « less
  5. Pulsar timing arrays (PTAs) hunt for gravitational waves (GWs) by searching for the correlations that GWs induce in the time-of-arrival residuals from different pulsars. If the GW sources are of astrophysical origin, then they are located at discrete points on the sky. However, PTA data are often modeled, and subsequently analyzed, via a “standard Gaussian ensemble.” That ensemble is obtained in the limit of an infinite density of vanishingly weak, Poisson-distributed sources. In this paper, we move away from that ensemble, to study the effects of two types of “source anisotropy.” The first (a), which is often called “shot noise,” arises because there are N discrete GW sources at specific sky locations. The second (b) arises because the GW source positions are not a Poisson process, for example, because galaxy locations are clustered. Here, we quantify the impact of (a) and (b) on the mean and variance of the pulsar-averaged Hellings and Downs correlation. For conventional PTA sources, we show that the effects of shot noise (a) are much larger than the effects of clustering (b). Published by the American Physical Society2024 
    more » « less