skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Neural Upscaling from Residue-Level Protein Structure Networks to Atomistic Structures
Coarse-graining is a powerful tool for extending the reach of dynamic models of proteins and other biological macromolecules. Topological coarse-graining, in which biomolecules or sets thereof are represented via graph structures, is a particularly useful way of obtaining highly compressed representations of molecular structures, and simulations operating via such representations can achieve substantial computational savings. A drawback of coarse-graining, however, is the loss of atomistic detail—an effect that is especially acute for topological representations such as protein structure networks (PSNs). Here, we introduce an approach based on a combination of machine learning and physically-guided refinement for inferring atomic coordinates from PSNs. This “neural upscaling” procedure exploits the constraints implied by PSNs on possible configurations, as well as differences in the likelihood of observing different configurations with the same PSN. Using a 1 μs atomistic molecular dynamics trajectory of Aβ1–40, we show that neural upscaling is able to effectively recapitulate detailed structural information for intrinsically disordered proteins, being particularly successful in recovering features such as transient secondary structure. These results suggest that scalable network-based models for protein structure and dynamics may be used in settings where atomistic detail is desired, with upscaling employed to impute atomic coordinates from PSNs.  more » « less
Award ID(s):
1361425 1826589 1939237
PAR ID:
10376711
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Biomolecules
Volume:
11
Issue:
12
ISSN:
2218-273X
Page Range / eLocation ID:
1788
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We developed coarse-grained models of spike proteins in SARS-CoV-2 coronavirus and angiotensin-converting enzyme 2 (ACE2) receptor proteins to study the endocytosis of a whole coronavirus under physiologically relevant spatial and temporal scales. We first conducted all-atom explicit-solvent molecular dynamics simulations of the recently characterized structures of spike and ACE2 proteins. We then established coarse-grained models using the shape-based coarse-graining approach based on the protein crystal structures and extracted the force field parameters from the all-atom simulation trajectories. To further analyze the coarse-grained models, we carried out normal mode analysis of the coarse-grained models to refine the force field parameters by matching the fluctuations of the internal coordinates with the original all-atom simulations. Finally, we demonstrated the capability of these coarse-grained models by simulating the endocytosis of a whole coronavirus through the host cell membrane. We embedded the coarse-grained models of spikes on the surface of the virus envelope and anchored ACE2 receptors on the host cell membrane, which is modeled using a one-particle-thick lipid bilayer model. The coarse-grained simulations show the spike proteins adopt bent configurations due to their unique flexibility during their interaction with the ACE2 receptors, which makes it easier for them to attach to the host cell membrane than rigid spikes. 
    more » « less
  2. Physics-based, atom-centered machine learning (ML) representations have been instrumental to the effective integration of ML within the atomistic simulation community. Many of these representations build off the idea of atoms as having spherical, or isotropic, interactions. In many communities, there is often a need to represent groups of atoms, either to increase the computational efficiency of simulation via coarse-graining or to understand molecular influences on system behavior. In such cases, atom-centered representations will have limited utility, as groups of atoms may not be well-approximated as spheres. In this work, we extend the popular Smooth Overlap of Atomic Positions (SOAP) ML representation for systems consisting of non-spherical anisotropic particles or clusters of atoms. We show the power of this anisotropic extension of SOAP, which we deem AniSOAP, in accurately characterizing liquid crystal systems and predicting the energetics of Gay–Berne ellipsoids and coarse-grained benzene crystals. With our study of these prototypical anisotropic systems, we derive fundamental insights on how molecular shape influences mesoscale behavior and explain how to reincorporate important atom–atom interactions typically not captured by coarse-grained models. Moving forward, we propose AniSOAP as a flexible, unified framework for coarse-graining in complex, multiscale simulation. 
    more » « less
  3. Stochastic dynamics, such as molecular dynamics, are important in many scientific applications. However, summarizing and analyzing the results of such simulations is often challenging due to the high dimension in which simulations are carried out and, consequently, due to the very large amount of data that are typically generated. Coarse graining is a popular technique for addressing this problem by providing compact and expressive representations. Coarse graining, however, potentially comes at the cost of accuracy, as dynamical information is, in general, lost when projecting the problem in a lower-dimensional space. This article shows how to eliminate coarse-graining error using two key ideas. First, we represent coarse-grained dynamics as a Markov renewal process. Second, we outline a data-driven, non-parametric Mori–Zwanzig approach for computing jump times of the renewal process. Numerical tests on a small protein illustrate the method. 
    more » « less
  4. Fluctuations of protein three-dimensional structures and large-scale conformational transitions are crucial for the biological function of proteins and their complexes. Experimental studies of such phenomena remain very challenging and therefore molecular modeling can be a good alternative or a valuable supporting tool for the investigation of large molecular systems and long-time events. In this minireview, we present two alternative approaches to the coarse-grained (CG) modeling of dynamic properties of protein systems. We discuss two CG representations of polypeptide chains used for Monte Carlo dynamics simulations of protein local dynamics and conformational transitions, and highly simplified structure-based elastic network models of protein flexibility. In contrast to classical all-atom molecular dynamics, the modeling strategies discussed here allow the quite accurate modeling of much larger systems and longer-time dynamic phenomena. We briefly describe the main features of these models and outline some of their applications, including modeling of near-native structure fluctuations, sampling of large regions of the protein conformational space, or possible support for the structure prediction of large proteins and their complexes. 
    more » « less
  5. Single-molecule Förster resonance energy transfer (smFRET) is an experimental methodology to track the real-time dynamics of molecules using fluorescent probes to follow one or more intramolecular distances. These distances provide a low-dimensional representation of the full atomistic dynamics. Under mild technical conditions, Takens’ Delay Embedding Theorem guarantees that the full three-dimensional atomistic dynamics of a system are diffeomorphic (i.e., related by a smooth and invertible transformation) to a time-delayed embedding of one or more scalar observables. Appealing to these theoretical guarantees, we employ manifold learning, artificial neural networks, and statistical mechanics to learn from molecular simulation training data the a priori unknown transformation between the atomic coordinates and delay-embedded intramolecular distances accessible to smFRET. This learned transformation may then be used to reconstruct atomistic coordinates from smFRET time series data. We term this approach Single-molecule TAkens Reconstruction (STAR). We have previously applied STAR to reconstruct molecular configurations of a C24H50 polymer chain and the mini-protein Chignolin with accuracies better than 0.2 nm from simulated smFRET data under noise free and high time resolution conditions. In the present work, we investigate the role of signal-to-noise ratio, data volume, and time resolution in simulated smFRET data to assess the performance of STAR under conditions more representative of experimental realities. We show that STAR can reconstruct the Chignolin and Villin mini-proteins to accuracies of 0.12 and 0.42 nm, respectively, and place bounds on these conditions for accurate reconstructions. These results demonstrate that it is possible to reconstruct dynamical trajectories of protein folding from time series in noisy, time binned, experimentally measurable observables and lay the foundations for the application of STAR to real experimental data. 
    more » « less