Abstract Rapid adaptation is necessary to maintain, let alone expand, access to reliable, safe drinking water in the face of climate change. Existing research focuses largely on the role, priorities, and incentives of local managers to pursue adaptation strategies while mostly neglecting the role of the broader public, despite the strong public support required to fund and implement many climate adaptation plans. In this paper, we interrogate the relationship between personal experiences of household water supply impacts from extreme weather events and hazard exposure with individual concern about future supply reliability among a statewide representative sample of California households. We find that more than one-third of Californians report experiencing impacts of climate change on their household water supplies and show that these reported impacts differently influence residents’ concern about future water supply reliability, depending on the type of event experienced. In contrast, residents’ concern about future water supplies is not significantly associated with hazard exposure. These findings emphasize the importance of local managers’ attending to not only how climate change is projected to affect their water resources, but how, and whether, residents perceive these risks. The critical role of personal experience in increasing concern highlights that post-extreme events with water supply impacts may offer a critical window to advance solutions. Managers should not assume, however, that all extreme events will promote concern in the same way or to the same degree.
more »
« less
Anticipating water distribution service outages from increasing temperatures
Abstract With projected temperature increases and extreme events due to climate change for many regions of the world, characterizing the impacts of these emerging hazards on water distribution systems is necessary to identify and prioritize adaptation strategies for ensuring reliability. To aid decision-making, new insights are needed into how water distribution system reliability to climate-driven heat will change, and the proactive maintenance strategies available to combat failures. To this end, we present the model Perses, a framework that joins a water distribution network hydraulic solver with reliability models of physical assets or components to estimate temperature increase-driven failures and resulting service outages in the long term. A theoretical case study is developed using Phoenix, Arizona temperature profiles, a city with extreme temperatures and a rapidly expanding infrastructure. By end-of-century under hotter futures there are projected to be 1%–5% more pump failures, 2%–5% more PVC pipe failures, and 3%–7% more iron pipe failures (RCP 4.5–8.5) than a baseline historical temperature profile. Service outages, which constitute inadequate pressure for domestic and commercial use are projected to increase by 16%–26% above the baseline under maximum temperature conditions. The exceedance of baseline failures, when compounded across a large metro region, reveals potential challenges for budgeting, management, and maintenance. An exploration of the mitigation potential of adaptation strategies shows that expedited repair times are capable of offsetting the additional outages from climate change, but will come with a cost.
more »
« less
- PAR ID:
- 10376887
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Environmental Research: Infrastructure and Sustainability
- Volume:
- 2
- Issue:
- 4
- ISSN:
- 2634-4505
- Page Range / eLocation ID:
- Article No. 045002
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Climate-change-imposed challenges in the form of heightened frequency and intensity of weather events exert additional pressure on securing the imperative continuous and reliable power supply, leading to increased power outages. This research proposes a comprehensive framework for enhancing the resilience of electric power networks (EPNs) through reliability-based risk assessment, promoting predictions and proactive decisions. The presented research discusses weather phenomena, their association with climate change, and their projected impacts. The numerical weather prediction model, WRF 3.4.1, with a 4 km resolution cell grid, gives a more accurate projection of high winds’ frequency and intensity. The simulation period from 2086 to 2099 is based on a reference control period spanning from 2000 to 2013, with adjustments made to background conditions using climate model output consistent with projections for the late century, a pseudo-global warming (PGW) technique. The presented research focuses on the wooden power distribution poles. The reliability assessment approach employs fragility development and analysis against wind scenarios through advanced modeling techniques and statistical analysis used to mimic historical and projected wind scenarios and to allow numerous factors on both the demand and capacity sides and their inherent uncertainties to be considered. The annual probability of failure is obtained by performing a mathematical convolution of the fragility and the hazard curves, showing the reflection of the effects of climate change on the annual probability of failure. Scaling these results to a system-level resilience assessment will facilitate the flexible energy design strategies integration and allow smoother net-zero standards incorporation and adaptation to the changing environmental conditions. This understanding will allow the decision-makers to evaluate the critical locations within a distribution line and plan to address the vulnerabilities by hardening the assets or implementing modern microgrid techniques or distributed energy resource integration.more » « less
-
The rapid growth of demand in agricultural production has created water scarcity issues worldwide. Simultaneously, climate change scenarios have projected that more frequent and severe droughts are likely to occur. Adaptive water resources management has been suggested as one strategy to better coordinate surface water and groundwater resources (i.e., conjunctive water use) to address droughts. In this study, we enhanced an aggregated water resource management tool that represents integrated agriculture, water, energy, and social systems. We applied this tool to the Yakima River Basin (YRB) in Washington State, USA. We selected four indicators of system resilience and sustainability to evaluate four adaptation methods associated with adoption behaviors in alleviating drought impacts on agriculture under RCP4.5 and RCP 8.5 climate change scenarios. We analyzed the characteristics of four adaptation methods, including greenhouses, crop planting time, irrigation technology, and managed aquifer recharge as well as alternating supply and demand dynamics to overcome drought impact. The results show that climate conditions with severe and consecutive droughts require more financial and natural resources to achieve well-implemented adaptation strategies. For long-term impact analysis, managed aquifer recharge appeared to be a cost-effective and easy-to-adopt option, whereas water entitlements are likely to get exhausted during multiple consecutive drought events. Greenhouses and water-efficient technologies are more effective in improving irrigation reliability under RCP 8.5 when widely adopted. However, implementing all adaptation methods together is the only way to alleviate most of the drought impacts projected in the future. The water resources management tool helps stakeholders and researchers gain insights in the roles of modern inventions in agricultural water cycle dynamics in the context of interactive multi-sector systems.more » « less
-
We assessed sociodemographic disparities in basic service disruptions caused by Winter Storm Uri in Texas. We collected data through a bilingual telephone survey conducted in July 2021 (n = 753). Being Black, having children, and renting one’s residence were associated with longer power outage durations; being Black was also associated with longer water outages. Our findings highlight the need to plan for and ameliorate inequitable service outages and their attendant health risks in climate change–related extreme weather events such as Uri. (Am J Public Health. 2023;113(1):30–34. https://doi.org/10.2105/AJPH.2022.307110 )more » « less
-
Urban wastewater service provision is an important energy consumer as well as a potentially important energy producer. This study aims to advance understandings on the influence of climate change on the intra- and inter-annual patterns of wastewater treatment plants’ net life cycle energy consumption. Historic monthly operational data of a wastewater treatment plant in the northeast United States were obtained and its current net life cycle energy demand was investigated. Comprehensive multivariate and multiple linear regression analyses were then performed. The main climate variables (temperature, rainfall, and snowfall) and the wastewater characteristics (flow rate, water temperature, total suspended solids, 5-day biochemical oxygen demand, and chemical oxygen demand) were used to develop regression models for energy that is directly and indirectly consumed and generated at the treatment plant. Two different approaches, a lumped and a month-based method, for conducting the regression analysis were investigated. Whenever possible, these two approaches were combined to improve the predictive power of the regression models. The obtained result shows the treatment plant’s direct energy use consists of more than 86% of the total energy consumption currently. Various energy recovery strategies allow the treatment plant to offset more than 15% of its total energy consumption. The future annual wastewater influent of the plant was projected to decrease towards the end of the century under climate change, with a significantly larger seasonal variation. The influent wastewater quality is projected to decrease, leading to higher direct and indirect energy consumption for treatment. Projections of future intra-annual responses show that the seasonal variations of wastewater flowrate as well as the monthly cumulative energy demand can potentially experience a two-fold increase, resulting in more frequent system shocks and create operational difficulties.more » « less
An official website of the United States government
