skip to main content


Title: Foundry-fabricated grating coupler demultiplexer inverse-designed via fast integral methods
Abstract

Silicon photonics is an emerging technology which, enabling nanoscale manipulation of light on chips, impacts areas as diverse as communications, computing, and sensing. Wavelength division multiplexing is commonly used to maximize throughput over a single optical channel by modulating multiple data streams on different wavelengths concurrently. Traditionally, wavelength (de)multiplexers are implemented as monolithic devices, separate from the grating coupler, used to couple light into the chip. This paper describes the design and measurement of a grating coupler demultiplexer—a single device which combines both light coupling and demultiplexing capabilities. The device was designed by means of a custom inverse design algorithm which leverages boundary integral Maxwell solvers of extremely rapid convergence as the mesh is refined. To the best of our knowledge, the fabricated device enjoys the lowest insertion loss reported for grating demultiplexers, small size, high splitting ratio, and low coupling-efficiency imbalance between ports, while meeting the fabricability constraints of a standard UV lithography process.

 
more » « less
Award ID(s):
2109831 2047433 1849965
NSF-PAR ID:
10381860
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Physics
Volume:
5
Issue:
1
ISSN:
2399-3650
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A grating coupler on 700-nm-thick Z-cut lithium-niobate-on-insulator platform with high coupling efficiency, large bandwidth, and high fabrication tolerance is designed and optimized by inverse design method. The optimized grating coupler is fabricated with a single set of e-beam lithography and etching process, and it is experimentally characterized to possess peak coupling efficiency of −3.8 dB at 1574.93 nm, 1 dB bandwidth of 71.7 nm, and 3 dB bandwidth of over 120 nm, respectively.

     
    more » « less
  2. We design and experimentally demonstrate a polarizing beam splitter (PBS) on a silicon-on-insulator (SOI) platform based on an asymmetric directional coupler. The asymmetric directional coupler consists of a regular strip waveguide and a sub-wavelength grating (SWG) waveguide. Engineering the waveguide dispersion via SWG, the phase-matching condition can be satisfied for TM polarization over a broad bandwidth when the waveguide dimensions are optimized. The coupling region of the realized PBS is ∼7.2 µm long. For the fabricated PBS, the polarization extinction ratio (PER) is 10–45 dB and the insertion loss is 0.3–2.5 dB for TM polarization while the PER is 14–22 dB and the insertion loss is < 0.6 dB for TE polarization when operating in the wavelength range of 1460 –1610 nm.

     
    more » « less
  3. Grating coupler devices provide efficient, foundry-compatible vertical fiber-to-chip coupling solutions in integrated photonic platforms. However, standard grating coupler designs are highly polarization sensitive, which hinders their adoption. We present a new, to the best of our knowledge, type of 1D polarization-insensitive grating coupler (PIGC) that is based on a zero-birefringence subwavelength “corelet” waveguide. We demonstrate a PIGC for coupling in the telecommunications O-band in a 45-nm-node monolithic silicon-on-insulator (SOI) CMOS electronic-photonic platform, with measured insertion losses of 6.7 and 6.1 dB to transverse electric and transverse magnetic polarizations, respectively, and a ±1-dB polarization dependent loss bandwidth of 73 nm.

     
    more » « less
  4. Recent developments in quantum light–matter coupled systems and quantum transducers have highlighted the need for cryogenic optical measurements. In this study, we present a packaged fiber-optic coupler with a coupling efficiency of over 50% for telecom wavelength light down to the mK temperature range. Besides the high coupling efficiency, our method enables sensitive photonic device measurements that are immune to mechanical vibrations present in cryogenic setups.

     
    more » « less
  5. Bragg-grating based cavities and coupler designs present opportunities for flexible allocation of bandwidth and spectrum in silicon photonic devices. Integrated silicon photonic devices are moving toward mainstream, mass adoption, leading to the need for compact Bragg grating based designs. In this work we present a design and experimental validation of a cascaded contra-directional Bragg-grating coupler with a measured main lobe to side-lobe contrast of 12.93 dB. This level of performance is achieved in a more compact size as compared to conventional apodized gratings, and a similar design philosophy can be used to improve side-lobe reduction in grating-based mirror design for on-chip lasers and other cavity-based designs as well.

     
    more » « less