skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optical bistability in PECVD silicon-rich nitride
We present a study of optical bi-stability in a 3.02 refractive index at 1550nm plasma enhanced chemical vapor deposition (PECVD) silicon-rich nitride (SRN) film, as it pertains to bi-stable switching, memory applications, and thermal sensing applications. In this work we utilize an SRN ring resonator device, which we first characterize at low-power and then compare thermo-optic coefficients, (2.12 ± 0.125) × 10−4/°C, obtained from thermal-heating induced resonance shifts to optically induced resonance shifts as well as estimated propagation loss and absorption. We then measure the time response of this nonlinearity demonstrating the relaxation time to be 18.7 us, indicating the mechanism to be thermal in nature. Finally, we demonstrate bi-stable optical switching.  more » « less
Award ID(s):
2023730
PAR ID:
10383144
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
30
Issue:
25
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 45340
Size(s):
Article No. 45340
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Phase‐sensitive integrated photonic devices are highly susceptible to minor manufacturing deviations, resulting in significant performance inconsistencies. This variability has limited the scalability and widespread adoption of these devices. Here, a major advancement is achieved through continuous‐wave (CW) visible light (405 and 520 nm) trimming of plasma‐enhanced chemical vapor deposition (PECVD) silicon‐rich nitride (SRN) waveguides. The demonstrated method achieves precise, bidirectional refractive index tuning with a single laser source in CMOS‐compatible SRN samples with refractive indices of 2.4 and 2.9 (measured at 1550 nm). By utilizing a cost‐effective setup for real‐time resonance tracking in micro‐ring resonators, the resonant wavelength shifts as fine as 10 pm are attained. Additionally, a record red shift of 49.1 nm and a substantial blue shift of 10.6 nm are demonstrated, corresponding to refractive index changes of approximately 0.11 and −2 × 10−2. The blue and red shifts are both conclusively attributed to thermal annealing. These results highlight SRN's exceptional capability for permanent optical tuning, establishing a foundation for stable, precisely controlled performance in phase‐sensitive integrated photonic devices. 
    more » « less
  2. We demonstrate the thermo-optic properties of silicon-rich silicon nitride (SRN) films deposited using plasma-enhanced chemical vapor deposition (PECVD). Shifts in the spectral response of Mach-Zehnder interferometers (MZIs) as a function of temperature were used to characterize the thermo-optic coefficients of silicon nitride films with varying silicon contents. A clear relation is demonstrated between the silicon content and the exhibited thermo-optic coefficient in silicon nitride films, with the highest achievable coefficient being as high as (1.65±0.08) ×10−4K-1. Furthermore, we realize an SRN multi-mode interferometer (MMI) based thermo-optic switch with over 20 dB extinction ratio and total power consumption for two-port switching of 50 mW. 
    more » « less
  3. Plasmonic nanostructures with electrical connections have potential applications as new electro-optic devices due to their strong light–matter interactions. Plasmonic dimers with nanogaps between adjacent nanostructures are especially good at enhancing local electromagnetic (EM) fields at resonance for improved performance. In this study, we use optical extinction measurements and high-resolution electron microscopy imaging to investigate the thermal stability of electrically interconnected plasmonic dimers and their optical and morphological properties. Experimental measurements and finite difference time domain (FDTD) simulations are combined to characterize temperature effects on the plasmonic properties of large arrays of Au nanostructures on glass substrates. Experiments show continuous blue shifts of extinction peaks for heating up to 210°C. Microscopy measurements reveal these peak shifts are due to morphological changes that shrink nanorods and increase nanogap distances. Simulations of the nanostructures before and after heating find good agreement with experiments. Results show that plasmonic properties are maintained after thermal processing, but peak shifts need to be considered for device design. 
    more » « less
  4. Abstract Free carrier absorption (FCA) is established to be the cause of nonlinear losses in plasma‐enhanced chemical vapor deposition (PECVD) silicon‐rich nitride (SRN) waveguides. To validate this hypothesis, a photo‐induced current is measured in SRN thin films with refractive indices varying between 2.5 and 3.15 when a C‐band laser light is illuminating the SRN films at various powers, indicating the generation of free carriers. Furthermore, nonlinear loss dynamics is, for the first time, measured and characterized in detail in SRN waveguides by utilizing high peak power C‐band complex shape optical pulses for estimation of free carrier generation (FCG) and free carrier recombination (FCR) lifetimes and their dynamics. Both FCG and FCR are found to decrease with an increase in the refractive index of SRN, and, specifically, the FCR lifetimes are found (92 ± 7) ns, (39 ± 3) ns, and (31 ± 2) ns for the SRN indices of 2.7, 3, and 3.15, respectively. Lastly, nonlinear losses in high refractive index SRN waveguides are demonstrated to be minimized and altogether avoided when the pulse duration reduced below the free carrier generation lifetime, thus providing a way of taking a full advantage of the large inherent SRN nonlinear properties. 
    more » « less
  5. Abstract Films of polycrystalline terbium iron garnet (TbIG), cerium‐substituted TbIG (CeTbIG), and bismuth‐substituted TbIG (BiTbIG) are grown on Si substrates by pulsed laser deposition. The films grow under tensile strain due to thermal mismatch with the Si substrate, resulting in a dominant magnetoelastic anisotropy which, combined with shape anisotropy, leads to in‐plane magnetization. TbIG has a compensation temperature of 253 K which is reduced by substitution of Ce and Bi. The Faraday rotation at 1550 nm of the TbIG, Ce0.36TbIG, and Bi0.03TbIG films is 5400 ± 600° cm−1, 4500 ± 100° cm–1, and 6200 ± 300° cm−1, respectively, while Ce0.36TbIG and Bi0.03TbIG exhibit lower optical absorption than TbIG, attributed to a reduction in Fe2+and Tb4+absorption pathways. The high Faraday rotation of the films, and in particular the high magneto‐optical figure of merit of the Bi0.03TbIG of 720° dB−1at 1550 nm, make these polycrystalline films valuable for applications in integrated photonics. 
    more » « less