skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interpolation for Curves in Projective Space with Bounded Error
Abstract Given $$n$$ general points $$p_1, p_2, \ldots , p_n \in{\mathbb{P}}^r$$ it is natural to ask whether there is a curve of given degree $$d$$ and genus $$g$$ passing through them; by counting dimensions a natural conjecture is that such a curve exists if and only if $$\begin{equation*}n \leq \left\lfloor \frac{(r + 1)d - (r - 3)(g - 1)}{r - 1}\right\rfloor.\end{equation*}$$The case of curves with nonspecial hyperplane section was recently studied in [2], where the above conjecture was shown to hold with exactly three exceptions. In this paper, we prove a “bounded-error analog” for special linear series on general curves; more precisely we show that existence of such a curve subject to the stronger inequality $$\begin{equation*}n \leq \left\lfloor \frac{(r + 1)d - (r - 3)(g - 1)}{r - 1}\right\rfloor - 3.\end{equation*}$$Note that the $-3$ cannot be replaced with $-2$ without introducing exceptions (as a canonical curve in $${\mathbb{P}}^3$$ can only pass through nine general points, while a naive dimension count predicts twelve). We also use the same technique to prove that the twist of the normal bundle $$N_C(-1)$$ satisfies interpolation for curves whose degree is sufficiently large relative to their genus, and deduce from this that the number of general points contained in the hyperplane section of a general curve is at least $$\begin{equation*}\min\left(d, \frac{(r - 1)^2 d - (r - 2)^2 g - (2r^2 - 5r + 12)}{(r - 2)^2}\right).\end{equation*}$$ As explained in [7], these results play a key role in the author’s proof of the maximal rank conjecture [9].  more » « less
Award ID(s):
1802908
PAR ID:
10387605
Author(s) / Creator(s):
Date Published:
Journal Name:
International Mathematics Research Notices
Volume:
2021
Issue:
15
ISSN:
1073-7928
Page Range / eLocation ID:
11426 to 11451
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Given a sequence $$\{Z_d\}_{d\in \mathbb{N}}$$ of smooth and compact hypersurfaces in $${\mathbb{R}}^{n-1}$$, we prove that (up to extracting subsequences) there exists a regular definable hypersurface $$\Gamma \subset {\mathbb{R}}\textrm{P}^n$$ such that each manifold $$Z_d$$ is diffeomorphic to a component of the zero set on $$\Gamma$$ of some polynomial of degree $$d$$. (This is in sharp contrast with the case when $$\Gamma$$ is semialgebraic, where for example the homological complexity of the zero set of a polynomial $$p$$ on $$\Gamma$$ is bounded by a polynomial in $$\deg (p)$$.) More precisely, given the above sequence of hypersurfaces, we construct a regular, compact, semianalytic hypersurface $$\Gamma \subset {\mathbb{R}}\textrm{P}^{n}$$ containing a subset $$D$$ homeomorphic to a disk, and a family of polynomials $$\{p_m\}_{m\in \mathbb{N}}$$ of degree $$\deg (p_m)=d_m$$ such that $$(D, Z(p_m)\cap D)\sim ({\mathbb{R}}^{n-1}, Z_{d_m}),$$ i.e. the zero set of $$p_m$$ in $$D$$ is isotopic to $$Z_{d_m}$$ in $${\mathbb{R}}^{n-1}$$. This says that, up to extracting subsequences, the intersection of $$\Gamma$$ with a hypersurface of degree $$d$$ can be as complicated as we want. We call these ‘pathological examples’. In particular, we show that for every $$0 \leq k \leq n-2$$ and every sequence of natural numbers $$a=\{a_d\}_{d\in \mathbb{N}}$$ there is a regular, compact semianalytic hypersurface $$\Gamma \subset {\mathbb{R}}\textrm{P}^n$$, a subsequence $$\{a_{d_m}\}_{m\in \mathbb{N}}$$ and homogeneous polynomials $$\{p_{m}\}_{m\in \mathbb{N}}$$ of degree $$\deg (p_m)=d_m$$ such that (0.1)$$\begin{equation}b_k(\Gamma\cap Z(p_m))\geq a_{d_m}.\end{equation}$$ (Here $$b_k$$ denotes the $$k$$th Betti number.) This generalizes a result of Gwoździewicz et al. [13]. On the other hand, for a given definable $$\Gamma$$ we show that the Fubini–Study measure, in the Gaussian probability space of polynomials of degree $$d$$, of the set $$\Sigma _{d_m,a, \Gamma }$$ of polynomials verifying (0.1) is positive, but there exists a constant $$c_\Gamma$$ such that $$\begin{equation*}0<{\mathbb{P}}(\Sigma_{d_m, a, \Gamma})\leq \frac{c_{\Gamma} d_m^{\frac{n-1}{2}}}{a_{d_m}}.\end{equation*}$$ This shows that the set of ‘pathological examples’ has ‘small’ measure (the faster $$a$$ grows, the smaller the measure and pathologies are therefore rare). In fact we show that given $$\Gamma$$, for most polynomials a Bézout-type bound holds for the intersection $$\Gamma \cap Z(p)$$: for every $$0\leq k\leq n-2$$ and $t>0$: $$\begin{equation*}{\mathbb{P}}\left(\{b_k(\Gamma\cap Z(p))\geq t d^{n-1} \}\right)\leq \frac{c_\Gamma}{td^{\frac{n-1}{2}}}.\end{equation*}$$ 
    more » « less
  2. Abstract We study the following mean field equation on a flat torus $$T:=\mathbb{C}/(\mathbb{Z}+\mathbb{Z}\tau )$$: $$\begin{equation*} \varDelta u + \rho \left(\frac{e^{u}}{\int_{T}e^u}-\frac{1}{|T|}\right)=0, \end{equation*}$$where $$ \tau \in \mathbb{C}, \mbox{Im}\ \tau>0$$, and $|T|$ denotes the total area of the torus. We first prove that the solutions are evenly symmetric about any critical point of $$u$$ provided that $$\rho \leq 8\pi $$. Based on this crucial symmetry result, we are able to establish further the uniqueness of the solution if $$\rho \leq \min{\{8\pi ,\lambda _1(T)|T|\}}$$. Furthermore, we also classify all one-dimensional solutions by showing that the level sets must be closed geodesics. 
    more » « less
  3. Let { s j } j = 1 n \left \{ s_{j}\right \} _{j=1}^{n} be positive integers. We show that for any 1 ≤ L ≤ n , 1\leq L\leq n, ‖ ∏ j = 1 n ( 1 − z s j ) ‖ L ∞ ( | z | = 1 ) ≥ exp ⁡ ( 1 2 e L ( s 1 s 2 … s L ) 1 / L ) . \begin{equation*} \left \Vert \prod _{j=1}^{n}\left ( 1-z^{s_{j}}\right ) \right \Vert _{L_{\infty }\left ( \left \vert z\right \vert =1\right ) }\geq \exp \left ( \frac {1}{2e}\frac {L}{\left ( s_{1}s_{2}\ldots s_{L}\right ) ^{1/L}}\right ) . \end{equation*} In particular, this gives geometric growth if a positive proportion of the { s j } \left \{ s_{j}\right \} are bounded. We also show that when the { s j } \left \{ s_{j}\right \} grow regularly and faster than j ( log ⁡ j ) 2 + ε j\left ( \log j\right ) ^{2+\varepsilon } , some ε > 0 \varepsilon >0 , then the norms grow faster than exp ⁡ ( ( log ⁡ n ) 1 + δ ) \exp \left ( \left ( \log n\right ) ^{1+\delta }\right ) for some δ > 0 \delta >0 . 
    more » « less
  4. Abstract A conjecture of Kalai asserts that for $$d\geq 4$$, the affine type of a prime simplicial $$d$$-polytope $$P$$ can be reconstructed from the space of affine $$2$$-stresses of $$P$$. We prove this conjecture for all $$d\geq 5$$. We also prove the following generalization: for all pairs $(i,d)$ with $$2\leq i\leq \lceil \frac d 2\rceil -1$$, the affine type of a simplicial $$d$$-polytope $$P$$ that has no missing faces of dimension $$\geq d-i+1$$ can be reconstructed from the space of affine $$i$$-stresses of $$P$$. A consequence of our proofs is a strengthening of the Generalized Lower Bound Theorem: it was proved by Nagel that for any simplicial $(d-1)$-sphere $$\Delta $$ and $$1\leq k\leq \lceil \frac {d}{2}\rceil -1$$, $$g_{k}(\Delta )$$ is at least as large as the number of missing $(d-k)$-faces of $$\Delta $$; here we show that, for $$1\leq k\leq \lfloor \frac {d}{2}\rfloor -1$$, equality holds if and only if $$\Delta $$ is $$k$$-stacked. Finally, we show that for $$d\geq 4$$, any simplicial $$d$$-polytope $$P$$ that has no missing faces of dimension $$\geq d-1$$ is redundantly rigid, that is, for each edge $$e$$ of $$P$$, there exists an affine $$2$$-stress on $$P$$ with a non-zero value on $$e$$. 
    more » « less
  5. Abstract Let $$\gamma(G)$$ and $${\gamma _ \circ }(G)$$ denote the sizes of a smallest dominating set and smallest independent dominating set in a graph G, respectively. One of the first results in probabilistic combinatorics is that if G is an n -vertex graph of minimum degree at least d , then $$\begin{equation}\gamma(G) \leq \frac{n}{d}(\log d + 1).\end{equation}$$ In this paper the main result is that if G is any n -vertex d -regular graph of girth at least five, then $$\begin{equation}\gamma_(G) \leq \frac{n}{d}(\log d + c)\end{equation}$$ for some constant c independent of d . This result is sharp in the sense that as $$d \rightarrow \infty$$ , almost all d -regular n -vertex graphs G of girth at least five have $$\begin{equation}\gamma_(G) \sim \frac{n}{d}\log d.\end{equation}$$ Furthermore, if G is a disjoint union of $${n}/{(2d)}$$ complete bipartite graphs $$K_{d,d}$$ , then $${\gamma_\circ}(G) = \frac{n}{2}$$ . We also prove that there are n -vertex graphs G of minimum degree d and whose maximum degree grows not much faster than d log d such that $${\gamma_\circ}(G) \sim {n}/{2}$$ as $$d \rightarrow \infty$$ . Therefore both the girth and regularity conditions are required for the main result. 
    more » « less