skip to main content

Title: The Effect of Laser Shock Peening on Back Stress of Additively Manufactured Stainless Steel Parts
Abstract This work studies the use of laser shock peening (LSP) to improve back stress in additively manufactured (AM) 316L parts. Unusual hardening behavior in AM metal due to tortuous microstructure and strong texture poses additional design challenges. Anisotropic mechanical behavior complicates application for mechanical design because 3D printed parts will behave differently than traditionally manufactured parts under the same loading conditions. The prevalence of back-stress hardening or the Bauschinger effect causes reduced fatigue life under random loading and dissipates beneficial compressive residual stresses that prevent crack propagation. LSP is known to improve fatigue life by inducing compressive residual stress and has been applied with promising results to AM metal parts. It is here demonstrated that LSP may also be used as a tool for mitigating tensile back-stress hardening in AM parts, thereby reducing anisotropic hardening behavior and improving design use. It is also shown that the method of application of LSP to additively manufactured parts is key for achieving effective back-stress reduction. Back stress is extracted from additively manufactured dog bone samples built in both XY and XZ directions using hysteresis tensile. Both LSPed and as-built conditions are tested and compared, showing that LSPed samples exhibit a significant reduction to back stress when the laser processing is applied to the sample along the build direction. Electron backscatter diffraction (EBSD) performed under these conditions elucidates how grain morphologies and texture contribute to the observed improvement. Crystal plasticity finite element (CPFE) modeling develops insights as to the mechanisms by which this reduction is achieved in comparison with EBSD results. In particular, the difference in plastic behavior across build orientations of identified crystal planes and grain families are shown to impact the degree of LSP-induced back-stress reduction that is sustained through tensile loading.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Manufacturing Science and Engineering
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Laser shock peening (LSP) is investigated as a potential tool for reducing tensile back stress, shown here applied to rolled and annealed 304L austenitic steel. The back stress of treated and untreated dog-bone samples is extracted from hysteresis tensile testing. Electron back-scatter diffraction (EBSD) and orientation imaging microscopy (OIM) analysis quantify the geometrically necessary dislocation (GND) density distribution of unstrained and strained as well as unpeened and peened conditions. Finite element analysis (FEA) simulation models back stress and residual stress development through tensile testing and LSP treatment using known LSP pressure models and Ziegler's nonlinear kinematic hardening law. Nonlinear regression fitting of tensile testing stress–strain in as-received specimens extracts the kinematic hardening parameters that are used in numerical study. This research shows LSP may be used to overcome manufacturing design challenges presented by yield asymmetry due to back stress in rolled steel. 
    more » « less
  2. null (Ed.)
    Additive manufactured (AM) magnesium alloys corrode rapidly due to tensile stress and coarse microstructures. Cyclically combining (hybridizing) additive manufacturing with interlayer ultrasonic peening was proposed as a solution to improve corrosion resistance of additive manufactured magnesium WE43 alloy through strengthening mechanisms and compressive residual stress. Applying interlayer peening work hardened discrete layers and formed a glocal integrity of regional grain refinement and subsurface compressive residual stress barriers. Tensile residual stress that typically accelerates corrosion decreased 90%. Results showed time-resolved control over corrosion was attainable by interlayer peening, and local corrosion within print cells decreased 57% with respect to as-printed WE43. 
    more » « less
  3. Abstract In this research, a room temperature multicycle nanoindentation technique was implemented to evaluate the effects of the laser peening (LP) process on the surface mechanical behavior of additively manufactured (AM) Inconel 625. Repetitive deformation was introduced by loading-unloading during an instrumented nanoindentation test on the as-built (No LP), 1-layer, and 4-layer laser peened (1LP and 4LP) conditions. It was observed that laser-peened specimens had a significantly higher resistance to penetration of the indenter and lower permanent deformation. This is attributed to the pre-existing dislocation density induced by LP in the material which affects the dislocation interactions during the cyclic indentation. Moreover, high levels of compressive stresses, which are greater in the 4LP specimen than the 1LP specimen, lead to more effective improvement of surface fatigue properties. The transition of the material response from elastic-plastic to almost purely elastic in 4LP specimens was initiated much earlier than it did in the No LP, and 1LP specimens. In addition to the surface fatigue properties, hardness and elastic modulus were also evaluated and compared. 
    more » « less
  4. The finishing of additive manufactured (AM) components is crucial for endowing them with fatigue resistance. Unfortunately, current AM processes naturally promote anisotropic surface characteristics that make it challenging to optimize finishing processes. In this study, bead-blasting is explored as a process for finishing Electron Beam Melted (EBM) Ti-6Al-4V. The effects of anisotropic roughness characteristics on the mechanics of bead-blasting are delineated using surface texture measurements via optical profilometry and residual stress measurements via X-ray diffraction. As-received surfaces resulting from AM, as well as those that have been Electrical Discharge Machined (EDM), are studied. It is seen that pre-processed roughness textures heavily influence the final textures and residual stresses. These linkages are quantified using a plasticity index as the governing metric—a rougher surface features a larger plastic index, which results in comparatively greater evolution of its texture characteristics than a smoother surface after equivalent bead-blasting treatments. The mechanics of this evolution are delineated using energy-controlled indentation as a model representing a single impact in bead-blasting. It is seen that rougher surfaces featuring complex textures in as-received states also produce complex stress states featuring a greater level of locally tensile stresses during indentation compared with smoother surfaces. Approaches to address these complications are proposed that can potentially transform a printed, non-functional surface into one that is optimized for fatigue resistance.

    more » « less
  5. The aim of this study is to experimentally investigate the fatigue behavior of additively manufactured (AM) NiTi (i.e. Nitinol) specimens and compare the results to the wrought material. Additive manufacturing is a technique in which components are fabricated in a layer-by-layer additive process using a sliced CAD model based on the desired geometry. NiTi rods were fabricated in this study using Laser Engineered Net Shaping (LENS), a Direct Laser Deposition (DLD) AM technique. Due to the high plateau stress of the as-fabricated NiTi, all the AM specimens were heat-treated to reduce their plateau stress, close to the one for the wrought material. Two different heat treatment processes, resulting in different stress plateaus, were employed to be able to compare the results in stress- and strain-based fatigue analysis. Straincontrolled constant amplitude pulsating fatigue experiments were conducted on heat-treated AM NiTi specimens at room temperature (~24°C) to investigate their cyclic deformation and fatigue behavior. Fatigue lives of AM NiTi specimens were observed to be shorter than wrought material specifically in the high cycle fatigue regime. Fractography of the fracture surface of fatigue specimens using Scanning Electron Microscopy (SEM) revealed the presence of microstructural defects such as voids, resulting from entrapped gas or lack of fusion and serving as crack initiation sites, to be the main reason for the shorter fatigue lives of AM NiTi specimens. However, the maximum stress level found to be the most influential factor in the fatigue behavior of superelastic NiTi. 
    more » « less