Abstract In this study, novel ferromagnetic Ni‐containing silicon oxycarbide (SiOC–Ni) was successfully fabricated from a base polysiloxane (PSO) with the addition of nickel 2,4‐pentanedionate. The resultant SiOC–Ni nanocomposite consists of in situ formed Ni nanocrystallites with a small amount of NiO uniformly dispersed in the amorphous SiOC matrix, and the corresponding nanocrystallite size increases with the increase of the pyrolysis temperature. The formation of nickel silicides (NixSiy) is completely suppressed by the effect of water vapor during the pyrolysis. The fundamental phase evolution process and mechanisms are explained. In an argon atmosphere, the SiOC–Ni materials pyrolyzed at 900°C are stable up to 1000°C with less than 6 wt% weight loss; they exhibit desirable electrical conductivity up to ~900°C with the highest electrical conductivity at ~247 S/m. This series of SiOC–Ni materials also demonstrates exciting ferromagnetic behaviors. Their new semiconducting behavior with soft ferromagnetism presents promising application potentials for magnetic sensors, transformers, actuators, etc.
more »
« less
The Role of Carbon Content: A Comparison of the Nickel Particle Size and Magnetic Property of Nickel/Polysiloxane‐Derived Silicon Oxycarbide
A facile and novel processable method to synthesize the Ni nanoparticles (Ni NPs) by tailoring their size in the matrix of the silicon oxycarbide (SiOC) ceramic system is reported. This method is based on polymer‐derived ceramics (PDCs), instead of the conventional powder route. The specific structural characteristics and magnetic properties of the various Ni NPs/SiOC composites as a function of carbon content are systematically investigated. The magnetic properties are experimentally investigated as a function of NP size and measurement temperature. It is demonstrated that the change in the size of Ni NPs (average from ≈4 to ≈ 19 nm) determines the magnetic nature of superparamagnetism. Zero‐field‐cooled (ZFC) and field‐cooled (FC) magnetization studies under magnetic fields of 100 Oe are performed. The saturatedMversusH(M–H) loops (saturation magnetization) increase and the coercivity decreases with the size reduction of Ni NPs. It is an indicator of the presence of superparamagnetic behavior and single‐domain NP for ceramic materials.
more »
« less
- Award ID(s):
- 1751455
- PAR ID:
- 10392814
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Engineering Materials
- Volume:
- 25
- Issue:
- 9
- ISSN:
- 1438-1656
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Transition metal chalcogenide nanoparticles (NPs) are of interest for energy applications, including batteries, supercapacitors, and electrocatalysis. Many methods have been established for synthesizing Ni NPs, and conversion chemistry to form Ni oxide and phosphides from template Ni NPs is well‐understood. Sulfidation and selenidation of Ni NPs have been much less explored, however. We report a method for the conversion of Ni template NPs into sulfide and selenide product NPs using elemental sulfur, 1‐hexadecanthiol, thiourea, trioctylphosphine sulfide, elemental selenium, and selenourea. While maintaining mole ratios of 2 mmol sulfur/selenium precursor: mmol Ni, products with phases of Ni3S2, Ni9S8, NiS, NiSO4·6H2O, Ni3S4, Ni3Se2, and NiSe have been obtained. The products have voids that form through the Kirkendall effect during interdiffusion. Trends relating the chemical properties of the precursors to the phases of the products have been identified. While some precursors contained phosphorus, there was no significant incorporation of phosphorus in any of the products. An increase of the NP size during sulfidation and selenidation is consistent with ripening. The application of Ni sulfide and selenide NPs as electrocatalysts for the hydrogen evolution reaction is also demonstrated.more » « less
-
Abstract Although processing via external stimuli is a promising technique to tune the structure and properties of polymeric materials, the impact of magnetic fields on phase transitions in thermoresponsive polymer solutions is not well‐understood. As nanoparticle (NP) addition is also known to impact these thermodynamic and optical properties, synergistic effects from combining magnetic fields with NP incorporation provide a novel route for tuning material properties. Here, the thermodynamic, optical, and rheological properties of aqueous poly(N‐isopropyl acrylamide) (PNIPAM) solutions are examined in the presence of hydrophilic silica NPs and magnetic fields, individually and jointly, via Fourier‐transform infrared spectroscopy (FTIR), magneto‐turbidimetry, differential scanning calorimetry (DSC), and magneto‐rheology. While NPs and magnetic fields both reduce the phase separation energy barrier and lower optical transition temperatures by altering hydrogen bonding (H‐bonding), infrared spectra demonstrate that the mechanism by which these changes occur is distinct. Magnetic fields primarily alter solvent polarization while NPs provide PNIPAM–NP H‐bonding sites. Combining NP addition with field application uniquely alters the solution environment and results in field‐dependent rheological behavior that is unseen in polymer‐only solutions. These investigations provide fundamental understanding on the interplay of magnetic fields and NP addition on PNIPAM thermoresponsivity which can be harnessed for increasingly complex stimuli‐responsive materials.more » « less
-
The influence of oleylamine (OLA) concentration on the crystallography, morphology, surface chemistry, chemical bonding, and magnetic properties of solvothermal synthesized CoFe2O4 (CFO) nanoparticles (NPs) has been thoroughly investigated. Varying OLA concentration (0.01–0.1 M) resulted in the formation of cubic spinel-structured CoFe2O4 NPs in the size-range of 20–14 (±1) nm. The Fourier transform spectroscopic analyses performed confirmed the OLA binding to the CFO NPs. The thermogravimetric measurements revealed monolayer and multilayer coating of OLA on CFO NPs, which were further supported by the small-angle X-ray scattering measurements. The magnetic measurements indicated that the maximum saturation (MS) and remanent (Mr) magnetization decreased with increasing OLA concentration. The ratio of maximum dipolar field (Hdip), coercivity (HC), and exchanged bias field (Hex) (at 10 K) to the average crystallite size (Dxrd), i.e., (Hdip/Dxrd), (HC/Dxrd), and (Hex/Dxrd), increased linearly with OLA concentration, indicating that OLA concurrently controls the particle size and interparticle interaction among the CFO NPs. The results and analyses demonstrate that the OLA-mediated synthesis allowed for modification of the structural and magnetic properties of CFO NPs, which could readily find potential application in electronics and biomedicine.more » « less
-
Ni-SiOC nanocomposites maintain crystal-amorphous dual-phase nanostructures after high-temperature annealing at different temperatures (600 °C, 800 °C and 1000 °C), while the feature sizes of crystal Ni and amorphous SiOC increase with the annealing temperature. Corresponding to the dual-phase nanostructures, Ni-SiOC nanocomposites exhibit a high strength and good plastic flow stability. In this study, we conducted a He implantation in Ni-SiOC nanocomposites at 300 °C by in-situ transmission electron microscope (TEM) irradiation test. In-situ TEM irradiation revealed that both crystal Ni and amorphous SiOC maintain stability under He irradiation. The 600 °C annealed sample presents a better He irradiation resistance, as manifested by a smaller He-bubble size and lower density. Both the grain boundary and crystal-amorphous phase boundary act as a sink to absorb He and irradiation-induced defects in the Ni matrix. More importantly, amorphous SiOC ceramic is immune to He irradiation damage, contributing to the He irradiation resistance of Ni alloy.more » « less
An official website of the United States government
