skip to main content


Title: Surface and dynamical properties of GeI 2
Abstract GeI 2 is an interesting two-dimensional wide-band gap semiconductor because of diminished edge scattering due to an absence of dangling bonds. Angle-resolved x-ray photoemission spectroscopy indicates a germanium rich surface, and a surface to bulk core-level shift of 1.8 eV in binding energy, between the surface and bulk components of the Ge 2p 3/2 core-level, making clear that the surface is different from the bulk. Temperature dependent studies indicate an effective Debye temperature ( θ D ) of 186 ± 18 K for the germanium x-ray photoemission spectroscopy feature associated with the surface. These measurements also suggest an unusually high effective Debye temperature for iodine (587 ± 31 K), implying that iodine is present in the bulk of the material, and not the surface. From optical absorbance, GeI 2 is seen to have an indirect (direct) optical band gap of 2.60 (2.8) ± 0.02 (0.1) eV, consistent with the expectations. Temperature dependent magnetometry indicates that GeI 2 is moment paramagnetic at low temperatures (close to 4 K) and shows a diminishing saturation moment at high temperatures (close to 300 K and above).  more » « less
Award ID(s):
2044049
NSF-PAR ID:
10393080
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
2D Materials
Volume:
9
Issue:
2
ISSN:
2053-1583
Page Range / eLocation ID:
025001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Previous high-resolution angle-resolved photoemission (ARPES) studies of URu2Si2have characterized the temperature-dependent behavior of narrow-band states close to the Fermi level (EF) at low photon energies near the zone center, with an emphasis on electronic reconstruction due to Brillouin zone folding. A substantial challenge to a proper description is that these states interact with other hole-band states that are generally absent from bulk-sensitive soft x-ray ARPES measurements. Here we provide a more globalk-space context for the presence of such states and their relation to the bulk Fermi surface (FS) topology using synchrotron-based wide-angle and photon energy-dependent ARPES mapping of the electronic structure using photon energies intermediate between the low-energy regime and the high-energy soft x-ray regime. Small-spot spatial dependence,f-resonant photoemission, Si 2pcore-levels, x-ray polarization, surface-dosing modification, and theoretical surface slab calculations are employed to assist identification of bulk versus surface state character of theEF-crossing bands and their relation to specific U- or Si-terminations of the cleaved surface. The bulk FS topology is critically compared to density functional theory (DFT) and to dynamical mean field theory calculations. In addition to clarifying some aspects of the previously measured high symmetry Γ,ZandXpoints, incommensurate 0.6a* nested Fermi-edge states located alongZNZare found to be distinctly different from the DFT FS prediction. The temperature evolution of these states aboveTHO, combined with a more detailed theoretical investigation of this region, suggests a key role of theN-point in the hidden order transition.

     
    more » « less
  2. Germanium alloyed with α-tin (GeSn) transitions to a direct bandgap semiconductor of significance for optoelectronics. It is essential to localize the carriers within the active region for improving the quantum efficiency in a GeSn based laser. In this work, epitaxial GeSn heterostructure material systems were analyzed to determine the band offsets for carrier confinement: (i) a 0.53% compressively strained Ge 0.97 Sn 0.03 /AlAs; (ii) a 0.81% compressively strained Ge 0.94 Sn 0.06 /Ge; and (iii) a lattice matched Ge 0.94 Sn 0.06 /In 0.12 Al 0.88 As. The phonon modes in GeSn alloys were studied using Raman spectroscopy as a function of Sn composition, that showed Sn induced red shifts in wavenumbers of the Ge–Ge longitudinal optical phonon mode peaks. The material parameter b representing strain contribution to Raman shifts of a Ge 0.94 Sn 0.06 alloy was determined as b = 314.81 ± 14 cm −1 . Low temperature photoluminescence measurements were performed at 79 K to determine direct and indirect energy bandgaps of E g,Γ = 0.72 eV and E g,L = 0.66 eV for 0.81% compressively strained Ge 0.94 Sn 0.06 , and E g,Γ = 0.73 eV and E g,L = 0.68 eV for lattice matched Ge 0.94 Sn 0.06 epilayers. Chemical effects of Sn atomic species were analyzed using X-ray photoelectron spectroscopy (XPS), revealing a shift in Ge 3d core level (CL) spectra towards the lower binding energy affecting the bonding environment. Large valence band offset of Δ E V = 0.91 ± 0.1 eV and conduction band offset of Δ E C,Γ–X = 0.64 ± 0.1 eV were determined from the Ge 0.94 Sn 0.06 /In 0.12 Al 0.88 As heterostructure using CL spectra by XPS measurements. The evaluated band offset was found to be of type-I configuration, needed for carrier confinement in a laser. In addition, these band offset values were compared with the first-principles-based calculated Ge/InAlAs band alignment, and it was found to have arsenic up-diffusion limited to 1 monolayer of epitaxial GeSn overlayer, ruling out the possibility of defects induced modification of band alignment. Furthermore, this lattice matched GeSn/InAlAs heterostructure band offset values were significantly higher than GeSn grown on group IV buffer/substrates. Therefore, a lattice matched GeSn/InAlAs material system has large band offsets offering superior carrier confinement to realize a highly efficient GeSn based photonic device. 
    more » « less
  3. X-ray photoemission spectroscopy (XPS) has been used to examine the interaction between Au and HfS 3 at the Au/HfS 3 interface. XPS measurements reveal dissociative chemisorption of O 2 , leading to the formation of an oxide of Hf at the surface of HfS 3 . This surface hafnium oxide, along with the weakly chemisorbed molecular species, such as O 2 and H 2 O, are likely responsible for the observed p-type characteristics of HfS 3 reported elsewhere. HfS 3 devices exhibit n-type behaviour if measured in vacuum but turn p-type in air. Au thickness-dependent XPS measurements provide clear evidence of band bending as the S 2p and Hf 4f core-level peak binding energies for Au/HfS 3 are found to be shifted to higher binding energies. This band bending implies formation of a Schottky-barrier at the Au/HfS 3 interface, which explains the low measured charge carrier mobilities of HfS 3 -based devices. The transistor measurements presented herein also indicate the existence of a Schottky barrier, consistent with the XPS core-level binding energy shifts, and show that the bulk of HfS 3 is n-type. 
    more » « less
  4. Subchalcogenides are uncommon, and their chemical bonding results from an interplay between metal–metal and metal–chalcogenide interactions. Herein, we present Ir 6 In 32 S 21 , a novel semiconducting subchalcogenide compound that crystallizes in a new structure type in the polar P 31 m space group, with unit cell parameters a = 13.9378(12) Å, c = 8.2316(8) Å, α = β = 90°, γ = 120°. The compound has a large band gap of 1.48(2) eV, and photoemission and Kelvin probe measurements corroborate this semiconducting behavior with a valence band maximum (VBM) of −4.95(5) eV, conduction band minimum of −3.47(5) eV, and a photoresponse shift of the Fermi level by ∼0.2 eV in the presence of white light. X-ray absorption spectroscopy shows absorption edges for In and Ir do not indicate clear oxidation states, suggesting that the numerous coordination environments of Ir 6 In 32 S 21 make such assignments ambiguous. Electronic structure calculations confirm the semiconducting character with a nearly direct band gap, and electron localization function (ELF) analysis suggests that the origin of the gap is the result of electron transfer from the In atoms to the S 3p and Ir 5d orbitals. DFT calculations indicate that the average hole effective masses near the VBM (1.19 m e ) are substantially smaller than the average electron masses near the CBM (2.51 m e ), an unusual feature for most semiconductors. The crystal and electronic structure of Ir 6 In 32 S 21 , along with spectroscopic data, suggest that it is neither a true intermetallic nor a classical semiconductor, but somewhere in between those two extremes. 
    more » « less
  5. A chiral 3D coordination compound, [Gd 2 (L) 2 (ox) 2 (H 2 O) 2 ], arranged around a dinuclear Gd unit has been characterized by X-ray photoemission and X-ray absorption measurements in the context of density functional theory studies. Core level photoemission of the Gd 5p multiplet splittings indicates that spin orbit coupling dominates over j–J coupling evident in the 5p core level spectra of Gd metal. Indications of spin–orbit coupling are consistent with the absence of inversion symmetry due to the ligand field. Density functional theory predicts antiferromagnet alignment of the Gd 2 dimers and a band gap of the compound consistent with optical absorption. 
    more » « less