This content will become publicly available on December 8, 2023
- Award ID(s):
- 1943104
- Publication Date:
- NSF-PAR ID:
- 10393222
- Journal Name:
- Frontiers in Electronic Materials
- Volume:
- 2
- ISSN:
- 2673-9895
- Sponsoring Org:
- National Science Foundation
More Like this
-
Traditional manufacturing methods restrict the expansion of thermoelectric technology. Here, we demonstrate a new manufacturing approach for thermoelectric materials. Selective laser melting, an additive manufacturing technique, is performed on loose thermoelectric powders for the first time. Layer-by-layer construction is realized with bismuth telluride, Bi 2 Te 3 , and an 88% relative density was achieved. Scanning electron microscopy results suggest good fusion between each layer although multiple pores exist within the melted region. X-ray diffraction results confirm that the Bi 2 Te 3 crystal structure is preserved after laser melting. Temperature-dependent absolute Seebeck coefficient, electrical conductivity, specific heat, thermal diffusivity, thermal conductivity, and dimensionless thermoelectric figure of merit ZT are characterized up to 500 °C, and the bulk thermoelectric material produced by this technique has comparable thermoelectric and electrical properties to those fabricated from traditional methods. The method shown here may be applicable to other thermoelectric materials and offers a novel manufacturing approach for thermoelectric devices.
-
Over the past decade, Ag 2 Se has attracted increasing attention due to its potentially excellent thermoelectric (TE) performance as an n-type semiconductor. It has been considered a promising alternative to Bi–Te alloys and other commonly used yet toxic and/or expensive TE materials. To optimize the TE performance of Ag 2 Se, recent research has focused on fabricating nanosized Ag 2 Se. However, synthesizing Ag 2 Se nanoparticles involves energy-intensive and time-consuming techniques with poor yield of final product. In this work, we report a low-cost, solution-processed approach that enables the formation of Ag 2 Se thin films from Cu 2−x Se template films via cation exchange at room temperature. Our simple two-step method involves fabricating Cu 2−x Se thin films by the thiol-amine dissolution of bulk Cu 2 Se, followed by soaking Cu 2−x Se films in AgNO 3 solution and annealing to form Ag 2 Se. We report an average power factor (PF) of 617 ± 82 μW m −1 K −2 and a corresponding ZT value of 0.35 at room temperature. We obtained a maximum PF of 825 μW m −1 K −2 and a ZT value of 0.46 at room temperature for our best-performing Ag 2more »
-
Purpose AlSi10Mg alloy is commonly used in laser powder bed fusion due to its printability, relatively high thermal conductivity, low density and good mechanical properties. However, the thermal conductivity of as-built materials as a function of processing (energy density, laser power, laser scanning speed, support structure) and build orientation, are not well explored in the literature. This study aims to elucidate the relationship between processing, microstructure, and thermal conductivity. Design/methodology/approach The thermal conductivity of laser powder bed fusion (L-PBF) AlSi10Mg samples are investigated by the flash diffusivity and frequency domain thermoreflectance (FDTR) techniques. Thermal conductivities are linked to the microstructure of L-PBF AlSi10Mg, which changes with processing conditions. The through-plane exceeded the in-plane thermal conductivity for all energy densities. A co-located thermal conductivity map by frequency domain thermoreflectance (FDTR) and crystallographic grain orientation map by electron backscattered diffraction (EBSD) was used to investigate the effect of microstructure on thermal conductivity. Findings The highest through-plane thermal conductivity (136 ± 2 W/m-K) was achieved at 59 J/mm 3 and exceeded the values reported previously. The in-plane thermal conductivity peaked at 117 ± 2 W/m-K at 50 J/mm 3 . The trend of thermal conductivity reducing with energy density at similar porosity was primarily due to the reduced grain size producingmore »
-
Hydrogen is a rapidly diffusing monovalent cation in nominally anhydrous minerals (NAMs, such as olivine, orthopyroxene, and clinopyroxene), which is potentially re-equilibrated during silicate melt-rock and aqueous fluid-rock interactions in massif and abyssal peridotites. We apply a 3D numerical diffusion modeling technique to provide first-order timescales of complete hydrogen re-equilibration in olivine, clinopyroxene, and orthopyroxene over the temperature range 600-1200°C. Model crystals are 1-3 mm along the c-axis and utilize H+ diffusion coefficients appropriate for Fe-bearing systems. Two sets of models were run with different boundary compositions: 1) “low-H models” are constrained by mineral-melt equilibrium partitioning with a basaltic melt that has 0.75 wt% H2O and 2) “high-H models,” which utilize the upper end of the estimated range of mantle water solubility for each phase. Both sets of models yield re-equilibration timescales that are identical and are fast for all phases at a given temperature. These timescales have strong log-linear trends as a function of temperature (R2 from 0.97 to 0.99) that can be used to calculate expected re-equilibration time at a given temperature and grain size. At the high end of the model temperatures (1000-1200°C), H+ completely re-equilibrates in olivine, orthopyroxene, and clinopyroxene within minutes to hours, consistent withmore »
-
Abstract Additive manufacturing promises a major transformation of the production of high economic value metallic materials, enabling innovative, geometrically complex designs with minimal material waste. The overarching challenge is to design alloys that are compatible with the unique additive processing conditions while maintaining material properties sufficient for the challenging environments encountered in energy, space, and nuclear applications. Here we describe a class of high strength, defect-resistant 3D printable superalloys containing approximately equal parts of Co and Ni along with Al, Cr, Ta and W that possess strengths in excess of 1.1 GPa in as-printed and post-processed forms and tensile ductilities of greater than 13% at room temperature. These alloys are amenable to crack-free 3D printing via electron beam melting (EBM) with preheat as well as selective laser melting (SLM) with limited preheat. Alloy design principles are described along with the structure and properties of EBM and SLM CoNi-base materials.