skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Structured input–output analysis of stably stratified plane Couette flow
We employ a recently introduced structured input–output analysis (SIOA) approach to analyse streamwise and spanwise wavelengths of flow structures in stably stratified plane Couette flow. In the low-Reynolds-number ( $Re$ ) low-bulk Richardson number ( $$Ri_b$$ ) spatially intermittent regime, we demonstrate that SIOA predicts high amplification associated with wavelengths corresponding to the characteristic oblique turbulent bands in this regime. SIOA also identifies quasi-horizontal flow structures resembling the turbulent–laminar layers commonly observed in the high- $Re$ high- $$Ri_b$$ intermittent regime. An SIOA across a range of $$Ri_b$$ and $Re$ values suggests that the classical Miles–Howard stability criterion ( $$Ri_b\leq 1/4$$ ) is associated with a change in the most amplified flow structures when the Prandtl number is close to one ( $$Pr\approx 1$$ ). However, for $$Pr\ll 1$$ , the most amplified flow structures are determined by the product $$PrRi_b$$ . For $$Pr\gg 1$$ , SIOA identifies another quasi-horizontal flow structure that we show is principally associated with density perturbations. We further demonstrate the dominance of this density-associated flow structure in the high $Pr$ limit by constructing analytical scaling arguments for the amplification in terms of $Re$ and $Pr$ under the assumptions of unstratified flow (with $$Ri_b=0$$ ) and streamwise invariance.  more » « less
Award ID(s):
1652244
PAR ID:
10396179
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
948
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present numerical simulations of laminar and turbulent channel flow of an elastoviscoplastic fluid. The non-Newtonian flow is simulated by solving the full incompressible Navier–Stokes equations coupled with the evolution equation for the elastoviscoplastic stress tensor. The laminar simulations are carried out for a wide range of Reynolds numbers, Bingham numbers and ratios of the fluid and total viscosity, while the turbulent flow simulations are performed at a fixed bulk Reynolds number equal to 2800 and weak elasticity. We show that in the laminar flow regime the friction factor increases monotonically with the Bingham number (yield stress) and decreases with the viscosity ratio, while in the turbulent regime the friction factor is almost independent of the viscosity ratio and decreases with the Bingham number, until the flow eventually returns to a fully laminar condition for large enough yield stresses. Three main regimes are found in the turbulent case, depending on the Bingham number: for low values, the friction Reynolds number and the turbulent flow statistics only slightly differ from those of a Newtonian fluid; for intermediate values of the Bingham number, the fluctuations increase and the inertial equilibrium range is lost. Finally, for higher values the flow completely laminarizes. These different behaviours are associated with a progressive increases of the volume where the fluid is not yielded, growing from the centreline towards the walls as the Bingham number increases. The unyielded region interacts with the near-wall structures, forming preferentially above the high-speed streaks. In particular, the near-wall streaks and the associated quasi-streamwise vortices are strongly enhanced in an highly elastoviscoplastic fluid and the flow becomes more correlated in the streamwise direction. 
    more » « less
  2. This work studies two-dimensional fixed-flux Rayleigh–Bénard convection with periodic boundary conditions in both horizontal and vertical directions and analyses its dynamics using numerical continuation, secondary instability analysis and direct numerical simulation. The fixed-flux constraint leads to time-independent elevator modes with a well-defined amplitude. Secondary instability of these modes leads to tilted elevator modes accompanied by horizontal shear flow. For$$Pr=1$$, where$$Pr$$is the Prandtl number, a subsequent subcritical Hopf bifurcation leads to hysteresis behaviour between this state and a time-dependent direction-reversing state, followed by a global bifurcation leading to modulated travelling waves without flow reversal. Single-mode equations reproduce this moderate Rayleigh number behaviour well. At high Rayleigh numbers, chaotic behaviour dominated by modulated travelling waves appears. These transitions are characteristic of high wavenumber elevator modes since the vertical wavenumber of the secondary instability is linearly proportional to the horizontal wavenumber of the elevator mode. At a low$$Pr$$, relaxation oscillations between the conduction state and the elevator mode appear, followed by quasi-periodic and chaotic behaviour as the Rayleigh number increases. In the high$$Pr$$regime, the large-scale shear weakens, and the flow shows bursting behaviour that can lead to significantly increased heat transport or even intermittent stable stratification. 
    more » « less
  3. In this work, we apply structured input-output analysis to study optimal perturbations and dominant flow patterns in transitional plane Couette-Poiseuille flow. The results demonstrate that this approach predicts the high structured gain of perturbations with wavelengths corresponding to the oblique turbulent bands observed in experiments. The inclination angles of these structures and their Reynolds number dependence are also consistent with previously observed trends. Reynolds number scalings of the maximally amplified structures for an intermediate laminar profile that is equally balanced between plane Couette and Poiseuille flow show an exponent that is at the midpoint of previously computed values for these two flows. However, the dependence of these scaling exponents on the shape of laminar flow as the relative contribution moves from predominately plane Couette to Poiseuille flow is not monotonic and our analysis indicates the emergence of different optimal perturbation structures through the parameter regime. Finally we adapt our approach to estimate the advection speeds of oblique turbulent bands in plane Couette flow and Poiseuille flow by computing their phase speed. The results show good agreement with prior predictions of the convection speeds of these structures from direct numerical simulations, which suggests that this framework has further potential in examining the dynamics of these structures. 
    more » « less
  4. The central open question about Rayleigh–Bénard convection – buoyancy-driven flow in a fluid layer heated from below and cooled from above – is how vertical heat flux depends on the imposed temperature gradient in the strongly nonlinear regime where the flows are typically turbulent. The quantitative challenge is to determine how the Nusselt number $Nu$ depends on the Rayleigh number $Ra$ in the $$Ra\to \infty$$ limit for fluids of fixed finite Prandtl number $Pr$ in fixed spatial domains. Laboratory experiments, numerical simulations and analysis of Rayleigh's mathematical model have yet to rule out either of the proposed ‘classical’ $$Nu \sim Ra^{1/3}$$ or ‘ultimate’ $$Nu \sim Ra^{1/2}$$ asymptotic scaling theories. Among the many solutions of the equations of motion at high $Ra$ are steady convection rolls that are dynamically unstable but share features of the turbulent attractor. We have computed these steady solutions for $Ra$ up to $$10^{14}$$ with $Pr=1$ and various horizontal periods. By choosing the horizontal period of these rolls at each $Ra$ to maximize $Nu$ , we find that steady convection rolls achieve classical asymptotic scaling. Moreover, they transport more heat than turbulent convection in experiments or simulations at comparable parameters. If heat transport in turbulent convection continues to be dominated by heat transport in steady rolls as $$Ra\to \infty$$ , it cannot achieve the ultimate scaling. 
    more » « less
  5. Resolvent analysis provides a framework to predict coherent spatio-temporal structures of the largest linear energy amplification, through a singular value decomposition (SVD) of the resolvent operator, obtained by linearising the Navier–Stokes equations about a known turbulent mean velocity profile. Resolvent analysis utilizes a Fourier decomposition in time, which has thus far limited its application to statistically stationary or time-periodic flows. This work develops a variant of resolvent analysis applicable to time-evolving flows, and proposes a variant that identifies spatio-temporally sparse structures, applicable to either stationary or time-varying mean velocity profiles. Spatio-temporal resolvent analysis is formulated through the incorporation of the temporal dimension to the numerical domain via a discrete time-differentiation operator. Sparsity (which manifests in localisation) is achieved through the addition of an $$l_1$$-norm penalisation term to the optimisation associated with the SVD. This modified optimisation problem can be formulated as a nonlinear eigenproblem and solved via an inverse power method. We first showcase the implementation of the sparse analysis on a statistically stationary turbulent channel flow, and demonstrate that the sparse variant can identify aspects of the physics not directly evident from standard resolvent analysis. This is followed by applying the sparse space–time formulation on systems that are time varying: a time-periodic turbulent Stokes boundary layer and then a turbulent channel flow with a sudden imposition of a lateral pressure gradient, with the original streamwise pressure gradient unchanged. We present results demonstrating how the sparsity-promoting variant can either change the quantitative structure of the leading space–time modes to increase their sparsity, or identify entirely different linear amplification mechanisms compared with non-sparse resolvent analysis. 
    more » « less