skip to main content


Title: Biobased and degradable thiol–ene networks from levoglucosan for sustainable 3D printing
Levoglucosan is a renewable chemical obtained in high yields from pyrolysis of cellulosic biomass, which offers rich functionality for synthetic modification and crosslinking. Here, we report the facile and scalable synthesis of a family of biobased networks from triallyl levoglucosan and multifunctional thiols via UV-initiated thiol–ene click chemistry. The multifunctional thiols utilized in this study can also be sourced from renewable feedstocks, leading to overall high bio-based content of the synthesized levoglucosan networks. The thermomechanical and hydrolytic degradation properties of the resultant networks are tailored based on the type and stoichiometric ratio of thiol crosslinker employed. The Young's modulus and glass transition temperature of levoglucosan-based networks are tunable over the wide ranges of 3.3 MPa to 14.5 MPa and −19.4 °C to 6.9 °C, respectively. The levoglucosan-based thermosets exhibit excellent thermal stability with Td,10% > 305 °C for all networks. The suitability of these resin formulations for extrusion-based 3D printing was illustrated using a UV-assisted direct ink write (DIW) system creating 3D printed parts with excellent fidelity. Hydrolytic degradation of these 3D printed parts via ester hydrolysis demonstrated that levoglucosan-based resins are excellent candidates for sustainable rapid prototyping and mass production applications. Overall, this work displays the utility of levoglucosan as a renewable platform chemical that enables access to tailored thermosets important in applications ranging from 3D printing to biomaterials.  more » « less
Award ID(s):
1901635
NSF-PAR ID:
10397164
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Green Chemistry
ISSN:
1463-9262
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The development of tunable and degradable crosslinked-polyanhydride networks from renewably derived itaconic anhydrides and multifunctional thiols is presented. Itaconic acid was initially converted to ethyl itaconic anhydride and isoamyl itaconic anhydride via a two-step synthetic procedure on hundred-gram scale with minimal purification. Dinorbornene-functionalized derivatives were prepared via cycloaddition chemistry, and photoinitiated thiol–ene polymerization reactions were explored using commercially available tetra- and hexa-functional thiols, all using solvent-free syntheses. The thiol–ene reaction kinetics of different monomer compositions were characterized by real-time Fourier transform infrared (RT-FTIR) spectroscopy, with the norbornene functionalized derivatives exhibiting the highest reactivity towards thiol–ene photopolymerizations. The thermal and mechanical characteristics of the thermosets were analyzed and the viscoelastic behavior was investigated by dynamic mechanical analysis to understand the influence of the ester functionality and choice of crosslinker on the material properties. The anhydride backbone was found to be susceptible to controlled degradation under physiologically-(phosphate-buffered saline) and environmentally-relevant (artificial seawater) testing conditions over a period of 60 days at 50 °C. This work demonstrates that itaconic acid may be a useful feedstock in the generation of degradable polyanhydride networks via thiol–ene photopolymerization. 
    more » « less
  2. null (Ed.)
    3D printing is an essential tool for rapid prototyping in a variety of sectors such as automotive and public health. The 3D printing market is booming, and it is projected that it will continue to thrive in the coming years. Unfortunately, this rapid growth has led to an alarming increase in the amount of 3D printed plastic waste. 3D printing processes such as stereolithography (SLA) and digital light projection (DLP) in particular generally produce petroleum-based thermosets that are further worsening the plastic pollution problem. To mitigate this 3D printed plastic waste, sustainable alternatives to current 3D printing materials must be developed. The present review provides a comprehensive overview of the sustainable advances in SLA/DLP 3D printing to date and offers a perspective on future directions to improve sustainability in this field. The entire life cycle of 3D printed parts has been assessed by considering the feedstock selection and the end-of-use of the material. The feedstock selection section details how renewable feedstocks (from lignocellulosic biomass, oils, and animal products) or waste feedstocks ( e.g. , waste cooking oil) have been used to develop SLA/DLP resins. The end-of-use section describes how materials can be reprocessed ( e.g. thermoplastic materials or covalent adaptable networks) or degraded (through enzymatic or acid/base hydrolysis of sensitive linkages) after end-of-use. In addition, studies that have employed green chemistry principles in their resin synthesis and/or have shown their sustainable 3D printed parts to have mechanical properties comparable to commercial materials have been highlighted. This review also investigates how aspects of sustainability such as recycling for feedstock/end-of-use or biodegradation of 3D printed parts in natural environments can be incorporated as future research directions in SLA/DLP. 
    more » « less
  3. Abstract

    Design and direct fabrication of high‐performance thermosets and composites via 3D printing are highly desirable in engineering applications. Most 3D printed thermosetting polymers to date suffer from poor mechanical properties and low printing speed. Here, a novel ink for high‐speed 3D printing of high‐performance epoxy thermosets via a two‐stage curing approach is presented. The ink containing photocurable resin and thermally curable epoxy resin is used for the digital light processing (DLP) 3D printing. After printing, the part is thermally cured at elevated temperature to yield an interpenetrating polymer network epoxy composite, whose mechanical properties are comparable to engineering epoxy. The printing speed is accelerated by the continuous liquid interface production assisted DLP 3D printing method, achieving a printing speed as high as 216 mm h−1. It is also demonstrated that 3D printing structural electronics can be achieved by combining the 3D printed epoxy composites with infilled silver ink in the hollow channels. The new 3D printing method via two‐stage curing combines the attributes of outstanding printing speed, high resolution, low volume shrinkage, and excellent mechanical properties, and provides a new avenue to fabricate 3D thermosetting composites with excellent mechanical properties and high efficiency toward high‐performance and functional applications.

     
    more » « less
  4. We report the facile synthesis and characterization of 1,6-α linked functional stereoregular polysaccharides from biomass-derived levoglucosan via cationic ring-opening polymerization (cROP). Levoglucosan is a bicyclic acetal with rich hydroxyl functionality, which can be synthetically modified to install a variety of pendant groups for tailored properties. We have employed biocompatible and recyclable metal triflate catalysts – scandium and bismuth triflate – for green cROP of levoglucosan derivatives, even at very low catalyst loadings of 0.5 mol%. Combined experimental and computational studies provided key kinetic, thermodynamic, and mechanistic insights into the cROP of these derivatives with metal triflates. Computational studies reveal that ring-opening of levoglucosan derivatives is preferred at the 1,6 anhydro linkage and cROP proceeds in a regio- and stereo-specific manner to form 1,6-α glycosidic linkages. DFT calculations also show that biocompatible metal triflates efficiently coordinate with levoglucosan derivatives as compared to the highly toxic PF 5 used previously. Post-polymerization modification of levoglucosan-based polysaccharides is readily performed via UV-initiated thiol–ene click reactions. The reported levoglucosan based polymers exhibit good thermal stability ( T d > 250 °C) and a wide glass transition temperature ( T g ) window (<−150 °C to 32 °C) that is accessible with thioglycerol and lauryl mercaptan pendant groups. This work demonstrates the utility of levoglucosan as a renewably-derived scaffold, enabling facile access to tailored polysaccharides that could be important in many applications ranging from sustainable materials to biologically active polymers. 
    more » « less
  5. Abstract

    Hydrolytically degradable poly(β‐thioether ester ketal) thermosets are synthesized via radical‐mediated thiol‐ene photopolymerization using three novel dialkene acyclic ketal monomers and a mercaptopropionate based tetrafunctional thiol. For all thermoset compositions investigated, degradation behavior is highly tunable based on the structure of the incorporated ketal and pH. Complete degradation of the thermosets is observed upon exposure to acidic and neutral pH, and under high humidity conditions. Polymer networks composed of cross‐link junctions based on acyclic dimethyl ketals degrade the quickest, whereas networks containing acyclic cyclohexyl ketals undergo hydrolytic degradation on a longer timescale. Thermomechanical analysis reveals low glass transition temperatures and moduli typical of thioether‐based thermosets.

     
    more » « less