skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Development of a Raman spectroscopy system for in situ monitoring of microwave‐assisted inorganic transformations
Abstract Microwave heating methods offer unique advantages in preparations of inorganic solids due to the high heating rates, potentially selective heating, and time/energy reductions. Understanding of these enhancements as well as involved mechanisms is poor due to the lack of available and easily applicable in situ monitoring methods, particularly for samples in the solid state. Existing in situ studies typically rely on access to beamline facilities as well as custom‐built microwave systems, which is in the best case inconvenient and in the worst case not achievable. In situ Raman spectroscopy is an ideal technique as it provides rapid and unambiguous phase identification by a noncontact method. Further, the instrument components are simple and compact, facilitating use in the typical synthetic laboratory. Only a few reports on using Raman spectroscopy for in situ measurements during microwave heating exist, and they all utilize specialized custom reactor setups. In this work, a new Raman measurement system designed to observe inorganic transformations in situ that is readily deployable in a standard, commercially available laboratory scale microwave reactor is described. As a simple demonstration, the anatase‐to‐rutile phase transition in TiO2is monitored under both microwave and conventional furnace heating. The excellent time resolution achieved demonstrates the utility of the system in understanding microwave‐assisted methods for the preparation of inorganic compounds. The simplicity will encourage integration by the non‐specialist to understand microwave heating for synthetic preparations and promote wider application of the technique.  more » « less
Award ID(s):
2143982
PAR ID:
10401457
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Raman Spectroscopy
Volume:
54
Issue:
3
ISSN:
0377-0486
Format(s):
Medium: X Size: p. 296-304
Size(s):
p. 296-304
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Microwave heating is an intriguing method for the synthesis of inorganic solids offering a variety of advantages over conventional furnace heating, such as fast heating and cooling rates as well as volumetric and selective heating of precursors. However, there are many open questions regarding this “black‐box” process, and insights into the effect of microwave radiation on different types of solids are generally missing. In situ Raman spectroscopy is a powerful technique to unravel chemical transformations and identify intermediate species during microwave solid‐state syntheses. A major challenge is the temperature measurement under microwave conditions because (metallic) thermocouples cannot be used and optical pyrometry has significant drawbacks. In contrast, Raman thermometry is a viable method that relies on the temperature‐induced shift of Raman signals. Here, we use this method to estimate the temperature during microwave heating of a model system (titania) that undergoes a phase transition at temperatures >800°C. The estimation is derived from a flexible double exponential calibration function applied to Raman spectroscopic peak shifts in the temperature‐resolved furnace heating data, which was found to describe two titania modes (one anatase and one rutile) extremely well. Based on a detailed error and uncertainty analysis, we suggest options to further optimize Raman thermometry for use in high‐temperature microwave heating conditions. 
    more » « less
  2. Abstract Understanding and controlling the growth of vertically aligned carbon nanotube (VACNT) forests by chemical vapor deposition (CVD) is essential for unlocking their potential as candidate materials for next generation energy and mass transport devices. These advances in CNT manufacturing require developing in situ characterization techniques capable of interrogating how CNTs grow, interact, and self-assemble. Here we present a technique for real-time monitoring of VACNT forest height kinetics applied to a unique custom designed rapid thermal processing (RTP) reactor for CVD of VACNTs. While the integration of multiple infrared heating lamps enables creating designed spatiotemporal temperature profiles inside the reactor, they pose challenges for in situ measurements. Hence, our approach relies on contrast-adjusted videography and image processing, combined with calibration using 3D optical microscopy with large depth-of-field. Our work enables reliably measuring VACNT growth rates and catalytic lifetimes, which are not possible to measure using ex situ methods. 
    more » « less
  3. Abstract This work reports experimental demonstrations of reversible crystalline phase transition in ultrathin molybdenum ditelluride (MoTe2) controlled by thermal and mechanical mechanisms on the van der Waals (vdW) nanoelectromechanical systems (NEMS) platform, with hexagonal boron nitride encapsulated MoTe2structure residing on top of graphene layer. Benefiting from very efficient electrothermal heating and straining effects in the suspended vdW heterostructures, MoTe2phase transition is triggered by rising temperature and strain level. Raman spectroscopy monitors the MoTe2crystalline phase signatures in situ and clearly records reversible phase transitions between hexagonal 2H (semiconducting) and monoclinic 1T′ (metallic) phases. Combined with Raman thermometry, precisely measured nanomechanical resonances of the vdW devices enable the determination and monitoring of the strain variations as temperature is being regulated by electrothermal control. These results not only deepen the understanding of MoTe2phase transition, but also demonstrate a novel platform for engineering MoTe2phase transition and multiphysical devices. 
    more » « less
  4. Abstract The coordinated, cooperative use of microwave heating with conventional heating can provide advantages in chemical synthesis. Here, heterogeneous mixtures comprising ionic, highly microwave‐absorbing organic reagents and nearly microwave‐transparent arene solvents are heated conventionally and/or with microwaves, resulting in faster and, in some cases, higher yielding reactions when the two heating methods are applied cooperatively as compared to either method independently. Control experiments in more polar arene solvents show no advantage of cooperative heating, consistent with selective microwave heating phenomena. The experiments are facilitated by reactor technology that regulates internal reaction temperature and coordinates the application of conventional and microwave heating. The positive outcomes in this initial exploratory system suggest that cooperative heating can offer benefits in other systems designed for selective microwave heating. 
    more » « less
  5. Abstract In pursuit of diamond nanoparticles, a capacitively-coupled radio frequency flow-through plasma reactor was operated with methane-argon gas mixtures. Signatures of the final product obtained microscopically and spectroscopically indicated that the product was an amorphous form of graphite. This result was consistent irrespective of combinations of the macroscopic reactor settings. To explain the observed synthesis output, measurements of C2and gas properties were carried out by laser-induced fluorescence and optical emission spectroscopy. Strikingly, the results indicated a strong gas temperature gradient of 100 K per mm from the center of the reactor to the wall. Based on additional plasma imaging, a model of hot constricted region (filamentation region) was then formulated. It illustrated that, while the hot constricted region was present, the bulk of the gas was not hot enough to facilitate diamondsp3formation: characterized by much lower reaction rates, when compared tosp2,sp3formation kinetics are expected to become exponentially slow. This result was further confirmed by experiments under identical conditions but with a H2/CH4mixture, where no output material was detected: if graphiticsp2formation was expected as the main output material from the methane feedstock, atomic hydrogen would then be expected to etch it awayin situ, such that the net production of thatsp2-hybridized solid material is nearly a zero. Finally, the crucial importance of gas heating was corroborated by replacing RF with microwave source whereby facilesp3production was attained with H2/CH4gas mixture. 
    more » « less