skip to main content

This content will become publicly available on December 5, 2023

Title: Localized strain relaxation effect on gamma irradiated AlGaN/GaN high electron mobility transistors

Strain localization in microelectronic devices commonly arises from device geometry, materials, and fabrication processing. In this study, we controllably relieve the local strain field of AlGaN/GaN HEMTs by milling micro-trenches underneath the channel and compare the device performance as a function of the relieved strain as well as radiation dosage. Micro-Raman results suggest that the trenches locally relax the strain in device layers, decreasing the 2DEG density and mobility. Intriguingly, such strain relaxation is shown to minimize the radiation damage, measured after 10 Mrads of60Co-gamma exposure. For example, a 6-trench device showed only ∼8% and ∼6% decrease in saturation drain current and maximum transconductance, respectively, compared to corresponding values of ∼15% and ∼30% in a no-trench device. Negative and positive threshold voltage shifts are observed in 6-trench and no-trench devices, respectively, after gamma radiation. We hypothesize that the extent of gamma radiation damage depends on the strain level in the devices. Thus, even though milling a trench decreases 2DEG mobility, such decrease under gamma radiation is far less in a 6-trench device (∼1.5%) compared to a no-trench device (∼20%) with higher built-in strain.

 ;  ;  ;  ;  ;  
Award ID(s):
1856662 2015795
Publication Date:
Journal Name:
Applied Physics Letters
Page Range or eLocation-ID:
Article No. 233502
American Institute of Physics
Sponsoring Org:
National Science Foundation
More Like this
  1. We report thermal and mechanical responses accompanying electrical characteristics of depletion mode GaN high electron mobility transistors exposed to gamma radiation up to 107rads. Changes in the lattice strain and temperature were simultaneously characterized by changes in the phonon frequency of E2(high) and A1(LO) from the on-state and unpowered/pinched off reference states. Lower doses of radiation improved electrical properties; however, degradation initiated at about 106rads. We observed about 16% decrease in the saturation current and 6% decrease in the transconductance at the highest dose. However, a leakage current increase by three orders of magnitude was the most notable radiation effect. We observed temperature increase by 40% and mechanical stress increase by a factor of three at a dose of 107rads compared to the pristine devices. Spatial mapping of mechanical stress along the channel identifies the gate region as a mechanically affected area, whereas the thermal degradation was mostly uniform. Transmission electron microscopy showed contrast changes reflecting a high vacancy concentration in the gate region. These findings suggest that localized stress (mechanical hotspots) may increase vulnerability to radiation damage by accommodating higher concentration of defects that promote the leakage current.

  2. Radiation damage in electronic devices is known to be influenced by physics, design, and materials system. Here, we report the effects of biasing state (such as ON and OFF) and pre-existing damage in GaN high electron mobility transistors exposed to γ radiation. Controlled and accelerated DC biasing was used to prestress the devices, which showed significant degradation in device characteristics compared to pristine devices under ON and OFF states after γ irradiation. The experiment is performed in situ for the ON-state to investigate transient effects during irradiation until the total dose reaches 10 Mrad. It shows that threshold voltage, maximum transconductance, and leakage current initially decrease with dosage but slowly converge to a steady value at higher doses. After 10 Mrad irradiation, the OFF-state device demonstrates larger RONand one order of magnitude increased leakage current compared to the ON-state irradiated device. The micro-Raman study also confirms that the ON-state operation shows more radiation hardness than OFF and prestressed devices. Prestressed devices generate the highest threshold voltage shift from −2.85 to −2.49 V and two orders of magnitude higher leakage current with decreased saturation current after irradiation. These findings indicate that high electric fields during stressing can generate defects by modifying strain distribution, andmore »higher defect density can not only create more charges during irradiation but also accelerate the diffusion process from the ionizing track to the nearest collector and consequently degrade device performances.

    « less
  3. Abstract

    While radiation is known to degrade AlGaN/GaN high-electron-mobility transistors (HEMTs), the question remains on the extent of damage governed by the presence of an electrical field in the device. In this study, we induced displacement damage in HEMTs in both ON and OFF states by irradiating with 2.8 MeV Au4+ion to fluence levels ranging from1.72×1010to3.745×1013ions cm−2, or 0.001–2 displacement per atom (dpa). Electrical measurement is donein situ, and high-resolution transmission electron microscopy (HRTEM), energy dispersive x-ray (EDX), geometrical phase analysis (GPA), and micro-Raman are performed on the highest fluence of Au4+irradiated devices. The selected heavy ion irradiation causes cascade damage in the passivation, AlGaN, and GaN layers and at all associated interfaces. After just 0.1 dpa, the current density in the ON-mode device deteriorates by two orders of magnitude, whereas the OFF-mode device totally ceases to operate. Moreover, six orders of magnitude increase in leakage current and loss of gate control over the 2-dimensional electron gas channel are observed. GPA and Raman analysis reveal strain relaxation after a 2 dpa damage level in devices. Significant defects and intermixing of atoms near AlGaN/GaN interfaces and GaN layer are found from HRTEM and EDX analyses,more »which can substantially alter device characteristics and result in complete failure.

    « less
  4. Cadmium telluride (CdTe) solar cells are a promising photovoltaic (PV) technology for producing power in space owing to their high-efficiency (> 22.1 %), potential for specific power, and cost-effective manufacturing processes. In contrast to traditional space PVs, the high-Z (atomic number) CdTe absorbers can be intrinsically robust under extreme space radiation, offering long-term stability. Despite these advantages, the performance assessment of CdTe solar cells under high-energy particle irradiation (e.g., photons, neutrons, charged particles) is limited in the literature, and their stability is not comprehensively studied. In this work, we present the PV response of n-CdS / p-CdTe PVs under accelerated neutron irradiation. We measure PV properties of the devices at different neutron/photon doses. The equivalent dose deposited in the CdTe samples is simulated with deterministic and Monte Carlo radiation transport methods. Thin-film CdTe solar cells were synthesized on a fluorine-doped tin oxide (FTO) coated glass substrate (≈ 4 cm × 4 cm). CdS:O (≈ 100 nm) was reactively RF sputtered in an oxygen/argon ambient followed by a close-spaced sublimation deposition of CdTe (≈ 3.5 μm) in an oxygen/helium ambient. The sample was exposed to a 10 min vapor CdCl2 in oxygen/helium ambient at 430˚C. The samples were exposed to amore »wet CuCl2 solution prior to anneal 200ºC. A gold back-contact was formed on CdTe via thermal evaporation. The final sample contains 16 CdTe devices. For neutron irradiation, we cleaved the CdTe substrate into four samples and exposed two samples to ≈ 90 kW reactor power neutron radiation for 5.5 hours and 8.2 hours, respectively, in our TRIGA (Training, Research, Isotopes, General Atomics) reactor. We observed a noticeable color change of the glass substrates to brown after the neutron/gamma reactor exposure. Presumably, the injected high-energy neutrons caused the breaking of chemical bonds and the displacement of atoms in the glass substrates, creating point defects and color centers. The I-V characteristics showed noticeable deterioration with over 8 hour radiations. Specifically, the saturation current of the control devices was ≈ 25 nA increasing to 1 μA and 10 μA for the 5.5-hour and 8.2-hour radiated samples, respectively. The turn-on voltage of the control devices (≈ 0.85 V) decreased with the irradiated sample (≈ 0.75 V for 5.5-hour and ≈ 0.5 V for 8.2-hour exposures), implying noticeable radiation damage occurred at the heterojunction. The higher values of the ideality factor for irradiated devices (n > 2.2) compared to that of the control devices (n ≈ 1.3) also support the deterioration of the p-n junction. We observed the notable decrease in shunt resistance (RSH) and the increase in series resistance (Rs) with the neutron dose. It is possible that Cu ions introduced during the CuCl2 treatment may migrate into CdTe grain boundaries (GBs). The presence of Cu ions at GBs can create additional leakage paths for photocarrier transport, deteriorating the overall PV performance. We estimated the radiation dose of CdTe in comparison to Si (conventional PV) using a UUTR model (e.g., MCNP6 2D UTR Reactor simulations). In this model, we simulated Si and CdTe at the center point of the triangular fuel lattice and used an “unperturbed flux” tally in the water. Our simulations yielded a dose rate of 6916 Gy/s of neutrons and 16 Gy/s of photons for CdTe, and 1 Gy/s of neutrons and 21 Gy/s of photons for Si (doses +/- <1%). The large dose rate of neutrons in CdTe is mainly attributed to the large thermal neutron absorption cross-section of 113Cd. Based on this estimation, we calculate that the exposure of our CdTe PVs is equivalent to several million years in LEO (Low-Earth Orbit), or about 10,000 years for Si in LEO. Currently, we are working on a low-dose neutron/photon radiation on CdTe PVs and their light I-Vs and microstructural characterizations to gain better understanding on the degradation of CdTe PVs.« less
  5. Microstructured neutron detectors have the benefit of enhanced neutron detection efficiency as compared to planar devices, achieved by etching6LiF-filled trenches on the top surface of a silicon PIN diode. This sensor geometry results in a complex electric field distribution and depletion characteristics within the diode under reverse bias. For the first time on record, the effects of a fixed oxide charge on the microstructured device depletion characteristics and mobile carrier transport is investigated. Prototype detectors were fabricated with non-conformal surface doping. Capacitance voltage and current voltage measurements were performed for these prototypes and compared with COMSOL Multiphysics simulations. A spectral response from an241Am alpha particle source was acquired and analyzed. It was found that monoenergetic alpha particles produce three prominent peaks in the pulse height spectrum output by the device. The peaks were confirmed by simulations to correlate with dead layers and incident trajectories into the microstructure. It was also found that significant differences in pulse rise time result, corresponding with events arriving in a low-field region in the fins and a high-field region in the bulk. Geant4 was utilized for radiation transport, interaction modeling, and benchmarking the spectral data. The results of this simulation work provide confidence in themore »ability to attain and benchmark electrical characteristics and spectral data for semiconductor radiation detectors employing complex microstructures.

    « less