A<sc>bstract</sc> A feature the$$ \mathcal{N} $$ = 2 supersymmetric Sachdev-Ye-Kitaev (SYK) model shares with extremal black holes is an exponentially large number of ground states that preserve supersymmetry. In fact, the dimension of the ground state subsector is a finite fraction of the total dimension of the SYK Hilbert space. This fraction has a remarkably simple bulk interpretation as the probability that the zero-temperature wormhole — a supersymmetric Einstein-Rosen bridge — has vanishing length. Using chord techniques, we compute the zero-temperature Hartle-Hawking wavefunction; the results reproduce the ground state count obtained from boundary index computations, including non-perturbative corrections. Along the way, we improve the construction [1] of the super-chord Hilbert space and show that the transfer matrix of the empty wormhole enjoys an enhanced$$ \mathcal{N} $$ = 4 supersymmetry. We also obtain expressions for various two point functions at zero temperature. Finally, we find the expressions for the supercharges acting on more general wormholes with matter and present the superchord algebra.
more »
« less
Phases of $$ \mathcal{N} $$ = 2 Sachdev-Ye-Kitaev models
A bstract We study $$ \mathcal{N} $$ N = 2 supersymmetric Sachdev-Ye-Kitaev (SYK) models with com- plex fermions at non-zero background charge. Motivated by multi-charge supersymmetric black holes, we propose a new $$ \mathcal{N} $$ N = 2 SYK model with multiple U (1) symmetries, integer charges, and a non-vanishing supersymmetric index, realizing features not present in known SYK models. In both models, a conformal solution with a super-Schwarzian mode emerges at low temperatures, signalling the appearance of nearly AdS 2 /BPS physics. However, in contrast to complex SYK, the fermion scaling dimension depends on the background charge in the conformal limit. For a critical charge, we find a high to low entropy phase transition in which the conformal solution ceases to be valid. This transition has a simple interpretation– the fermion scaling dimension violates the unitarity bound. We offer some comments on a holographic interpretation for supersymmetric black holes.
more »
« less
- Award ID(s):
- 1911298
- PAR ID:
- 10411137
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2023
- Issue:
- 1
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)A bstract As shown in [1], two copies of the large N Majorana SYK model can produce spontaneous breaking of a Z 2 symmetry when they are coupled by appropriate quartic terms. In this paper we similarly study two copies of the complex SYK model coupled by a quartic term preserving the U(1) × U(1) symmetry. We also present a tensor counterpart of this coupled model. When the coefficient α of the quartic term lies in a certain range, the coupled large N theory is nearly conformal. We calculate the scaling dimensions of fermion bilinear operators as functions of α . We show that the operator $$ {c}_{1i}^{\dagger }{c}_{2i} $$ c 1 i † c 2 i , which is charged under the axial U(1) symmetry, acquires a complex dimension outside of the line of fixed points. We derive the large N Dyson-Schwinger equations and show that, outside the fixed line, this U(1) symmetry is spontaneously broken at low temperatures because this operator acquires an expectation value. We support these findings by exact diagonalizations extrapolated to large N .more » « less
-
A bstract We study non-supersymmetric extremal black hole excitations of 4d $$ \mathcal{N} $$ N = 2 supersymmetric string vacua arising from compactification on Calabi-Yau threefolds. The values of the (vector multiplet) moduli at the black hole horizon are governed by the attractor mechanism. This raises natural questions, such as “what is the distribution of attractor points on moduli space?” and “how many attractor black holes are there with horizon area up to a certain size?” We employ tools developed by Denef and Douglas [1] to answer these questions.more » « less
-
A<sc>bstract</sc> We combine supersymmetric localization with the numerical conformal bootstrap to bound the scaling dimension and OPE coefficient of the lowest-dimension unprotected operator in$$ \mathcal{N} $$ = 4 SU(N) super-Yang-Mills theory for a wide range ofNand Yang-Mills couplingsgYM. We find that our bounds are approximately saturated by weak coupling results at smallgYM. Furthermore, at largeNour bounds interpolate between integrability results for the Konishi operator at smallgYMand strong-coupling results, including the first few stringy corrections, for the lowest-dimension double-trace operator at largegYM. In particular, our scaling dimension bounds describe the level splitting between the single- and double-trace operators at intermediate coupling.more » « less
-
A<sc>bstract</sc> It has long been conjectured that the largeNdeconfinement phase transition of$$ \mathcal{N} $$ = 4 SU(N) super-Yang-Mills corresponds via AdS/CFT to the Hawking-Page transition in which black holes dominate the thermal ensemble, and quantitative evidence of this has come through the recent matching of the superconformal index of$$ \frac{1}{16} $$ -BPS states to the supersymmetric black hole entropy. We introduce the half-BPS Gukov-Witten surface defect as a probe of the superconformal index, which also serves as an order parameter for the deconfinement transition. This can be studied directly in field theory as a modification of the usual unitary matrix model or in the dual description as a D3-brane probe in the background of a (complex) supersymmetric black hole. Using a saddle point approximation, we determine our defect index in the largeNlimit as a simple function of the chemical potentials and show independently that it is reproduced by the renormalized action of the brane in the black hole background. Along the way, we also comment on the Cardy limit and the thermodynamics of the D3-brane in the generalized ensemble. The defect index sharply distinguishes between the confining and the deconfining phases of the gauge theory and thus is a supersymmetric non-perturbative order parameter for these largeNphase transitions which deserves further investigation. Finally, our work provides an example where the properties of a black hole coupled to an external system can be analyzed precisely.more » « less
An official website of the United States government

