skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Metamaterial characterization from far-field acoustic wave measurements using convolutional neural network
Identifying the material properties of unknown media is an important scientific/engineering challenge in areas as varied as in-vivo tissue health diagnostics and metamaterial characterization. Currently, techniques exist to retrieve the material parameters of large unknown media from elastic wave scattering in free-space using analytical or numerical methods. However, applying these methods to small samples on the order of few wavelengths in diameter is challenging, as the fields scattered by these samples become significantly contaminated by diffraction from the sample edges. Here, we propose a method to extract the material parameters of small samples using convolutional neural networks trained to learn the mapping between far-field echoes and the material parameters. Networks were trained with synthetic time domain echo data obtained by simulating the free-space scattering of sound from unknown media underwater. Results show that neural networks can accurately predict effective material parameters such as mass density, bulk modulus, and shear modulus even when small training sets are used. Furthermore, we demonstrate in experiments executed in a water tank that the networks trained with synthetic data can accurately estimate the material properties of fabricated metamaterial samples from single-point echo measurements performed in the far-field. This work highlights the effectiveness of our approach to identify unknown media using far-field acoustic reflection dominated by diffraction fields and will open a new avenue toward acoustic sensing techniques.  more » « less
Award ID(s):
2054768
PAR ID:
10414989
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Physics
Volume:
10
ISSN:
2296-424X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Conventional methods used to identify the dynamical properties of unknown media from scattered mechanical waves rely on analytical or numerical manipulations of the wave equation. These methods show their limitations in scenarios where the analyzed medium is moderately sized and the diffraction from the material edges influences the scattered fields significantly, such as non-destructive diagnostics and metamaterial characterization. Here, we show that convolutional neural networks can interpret the diffracted fields and learn the mapping between the scattered fields and all the effective material parameters including mass density and stiffness tensors from a small set of numerical simulations. Furthermore, networks trained with synthetic data can process physical measurements and are very robust to measurement errors. More importantly, the trained network provides insight into the dynamic behavior of matter including quantitative measures of the scattered field sensitivity to each material property and how the sensitivity changes depending on the material under test. 
    more » « less
  2. Light scattering in participating media and translucent materials is typically modeled using the radiative transfer theory. Under the assumption of independent scattering between particles, it utilizes several bulk scattering parameters to statistically characterize light-matter interactions at the macroscale. To calculate these parameters based on microscale material properties, the Lorenz-Mie theory has been considered the gold standard. In this paper, we present a generalized framework capable of systematically and rigorously computing bulk scattering parameters beyond the far-field assumption of Lorenz-Mie theory. Our technique accounts for microscale wave-optics effects such as diffraction and interference as well as interactions between nearby particles. Our framework is general, can be plugged in any renderer supporting Lorenz-Mie scattering, and allows arbitrary packing rates and particles correlation; we demonstrate this generality by computing bulk scattering parameters for a wide range of materials, including anisotropic and correlated media. 
    more » « less
  3. Active acoustic metamaterials incorporate electric circuit elements that input energy into an otherwise passive medium to aptly modulate the effective material properties. Here, we propose an active acoustic metamaterial with Willis coupling to drastically extend the tunability of the effective density and bulk modulus with the accessible parameter range enlarged by at least two orders of magnitude compared to that of a non-Willis metamaterial. Traditional active metamaterial designs are based on local resonances without considering the Willis coupling that limit their accessible effective material parameter range. Our design adopts a unit cell structure with two sensor-transducer pairs coupling the acoustic response on both sides of the metamaterial by detecting incident waves and driving active signals asymmetrically superimposed onto the passive response of the material. The Willis coupling results from feedback control circuits with unequal gains. These asymmetric feedback control circuits use Willis coupling to expand the accessible range of the effective density and bulk modulus of the metamaterial. The extreme effective material parameters realizable by the metamaterials will remarkably broaden their applications in biomedical imaging, noise control, and transformation acoustics-based cloaking. 
    more » « less
  4. Diffraction-limited optical imaging through scattering media has the potential to transform many applications such as airborne and space-based imaging (through the atmosphere), bioimaging (through skin and human tissue), and fiber-based imaging (through fiber bundles). Existing wavefront shaping methods can image through scattering media and other obscurants by optically correcting wavefront aberrations using high-resolution spatial light modulators—but these methods generally require (i) guidestars, (ii) controlled illumination, (iii) point scanning, and/or (iv) statics scenes and aberrations. We propose neural wavefront shaping (NeuWS), a scanning-free wavefront shaping technique that integrates maximum likelihood estimation, measurement modulation, and neural signal representations to reconstruct diffraction-limited images through strong static and dynamic scattering media without guidestars, sparse targets, controlled illumination, nor specialized image sensors. We experimentally demonstrate guidestar-free, wide field-of-view, high-resolution, diffraction-limited imaging of extended, nonsparse, and static/dynamic scenes captured through static/dynamic aberrations. 
    more » « less
  5. Modeling fluid flow and transport in heterogeneous systems is often challenged by unknown parameters that vary in space. In inverse modeling, measurement data are used to estimate these parameters. Due to the spatial variability of these unknown parameters in heterogeneous systems (e.g., permeability or diffusivity), the inverse problem is ill-posed and infinite solutions are possible. Physics-informed neural networks (PINN) have become a popular approach for solving inverse problems. However, in inverse problems in heterogeneous systems, PINN can be sensitive to hyperparameters and can produce unrealistic patterns. Motivated by the concept of ensemble learning and variance reduction in machine learning, we propose an ensemble PINN (ePINN) approach where an ensemble of parallel neural networks is used and each sub-network is initialized with a meaningful pattern of the unknown parameter. Subsequently, these parallel networks provide a basis that is fed into a main neural network that is trained using PINN. It is shown that an appropriately selected set of patterns can guide PINN in producing more realistic results that are relevant to the problem of interest. To assess the accuracy of this approach, inverse transport problems involving unknown heat conductivity, porous media permeability, and velocity vector fields were studied. The proposed ePINN approach was shown to increase the accuracy in inverse problems and mitigate the challenges associated with non-uniqueness. 
    more » « less