skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Current Research on Zinc Oxide Nanoparticles: Synthesis, Characterization, and Biomedical Applications
Zinc oxide nanoparticles (ZnO-NPs) have piqued the curiosity of researchers all over the world due to their extensive biological activity. They are less toxic and biodegradable with the capacity to greatly boost pharmacophore bioactivity. ZnO-NPs are the most extensively used metal oxide nanoparticles in electronic and optoelectronics because of their distinctive optical and chemical properties which can be readily modified by altering the morphology and the wide bandgap. The biosynthesis of nanoparticles using extracts of therapeutic plants, fungi, bacteria, algae, etc., improves their stability and biocompatibility in many biological settings, and its biofabrication alters its physiochemical behavior, contributing to biological potency. As such, ZnO-NPs can be used as an effective nanocarrier for conventional drugs due to their cost-effectiveness and benefits of being biodegradable and biocompatible. This article covers a comprehensive review of different synthesis approaches of ZnO-NPs including physical, chemical, biochemical, and green synthesis techniques, and also emphasizes their biopotency through antibacterial, antifungal, anticancer, anti-inflammatory, antidiabetic, antioxidant, antiviral, wound healing, and cardioprotective activity. Green synthesis from plants, bacteria, and fungus is given special attention, with a particular emphasis on extraction techniques, precursors used for the synthesis and reaction conditions, characterization techniques, and surface morphology of the particles.  more » « less
Award ID(s):
2100861
PAR ID:
10416981
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nanomaterials
Volume:
12
Issue:
17
ISSN:
2079-4991
Page Range / eLocation ID:
3066
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Polyvinylpyrrolidone (PVP) fibers embedded with Zinc Oxide nanoparticles (ZnO NPs) were prepared by the centrifugal spinning of aqueous PVP solutions and ZnO NPs. The ZnO NPs were synthesized and coated with either cetyltrimethylammonium bromide or hexadecyltrimethylammonium bromide. The structure and morphology of the nanocomposite fibers were studied using scanning electron microscopy, X‐ray diffraction, energy‐dispersive X‐ray spectroscopy, Fourier transformed infrared spectroscopy and Thermogravimetric analysis. The effect of surfactant coating on the antibacterial activity of ZnO NPs and PVP/ZnO nanocomposite fibers againstEscherichia coli(E. coli) andBacillus megaterium(B. megaterium) bacteria was systematically investigated. The present study indicated that coating the ZnO NPs with surfactants resulted in large and uniform inhibition of bacterial growth. 
    more » « less
  2. Titanium dioxide (TiO2) and zinc oxide (ZnO) engineered nanoparticles (NPs) are used in mineral-based sunscreens due to their excellent ultraviolet light protection abilities. Over time, surface water can become contaminated... 
    more » « less
  3. Abstract Zinc oxide nanoparticles (ZnO NPs) are versatile and promising, with diverse applications in environmental remediation, nanomedicine, cancer treatment, and drug delivery. In this study, ZnO NPs were synthesized utilizing extracts derived fromAcacia catechu, Artemisia vulgaris, andCynodon dactylon. The synthesized ZnO NPs showed an Ultraviolet–visible spectrum at 370 nm, and X-ray diffraction analysis indicated the hexagonal wurtzite framework with the average crystallite size of 15.07 nm, 16.98 nm, and 18.97 nm for nanoparticles synthesized utilizingA. catechu, A. vulgaris,andC. dactylonrespectively. Scanning electron microscopy (SEM) demonstrated spherical surface morphology with average diameters of 18.5 nm, 17.82 nm, and 17.83 nm for ZnO NPs prepared fromA. catechu, A. vulgaris, andC. dactylon,respectively. Furthermore, ZnO NPs tested againstStaphylococcus aureus, Kocuria rhizophila, Klebsiella pneumonia,andShigella sonneidemonstrated a zone of inhibition of 8 to 14 mm. The cell viability and cytotoxicity effects of ZnO NPs were studied on NIH-3T3 mouse fibroblast cells treated with different concentrations (5 μg/mL, 10 μg/mL, and 50 μg/mL). The results showed biocompatibility of all samples, except with higher doses causing cell death. In conclusion, the ZnO NPs synthesized through plant-mediated technique showed promise for potential utilization in various biomedical applications in the future. 
    more » « less
  4. Graphene and graphene oxide have shown good antibacterial activity against different bacterial species due to their unique physicochemical properties. Graphene oxide (GO) has been widely used to load metallic and metal oxide nanoparticles (NPs) to minimize their surface energy during processing and preparation, hence reducing their aggregation. In this work, GO was effectively synthesized and coated with different concentrations of zinc hydroxide Zn (OH)x using the precipitation method to prepare a GO/Zn (OH)x hybrid composite. The Zn (OH)x NPs and GO/Zn (OH)x nanocomposites were synthesized and characterized using various methods such as scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Coating GO with Zn (OH)x NPs resulted in improved aggregation of Zn (OH)x NPs as well as enhanced antibacterial activity of GO against Gram-positive and Gram-negative bacteria. Additionally, the effect of Zn (OH)x coating on the antibacterial properties of the GO/Zn (OH)x composite was systematically investigated. The synergistic effects of GO and Zn (OH)x NPs resulted in enhanced antibacterial properties of the composites compared to the pristine GO material. In addition, increasing the Zn (OH)x wt. % concentration led to an increased inhibition zone of the GO/Zn (H)x composite against Bacillus megaterium and E. coli bacteria. 
    more » « less
  5. Abstract Due to their well‐defined 3D architectures, permanent porosity, and diverse chemical functionalities, metal–organic framework nanoparticles (MOF NPs) are an emerging class of modular nanomaterials. Herein, recent developments in the synthesis and postsynthetic surface functionalization of MOF NPs that strengthen the fundamental understanding of how such structures form and grow are highlighted; the internal structure and external surface properties of these novel nanomaterials are highlighted as well. These fundamental advances have resulted in MOF NPs being used as components in chemical sensors, biological probes, and membrane separation materials, as well as building blocks for colloidal crystal engineering. 
    more » « less