Abstract Perfect vortex (PV) beams possessing annular intensity profiles independent of topological charges promise significant advances in particle manipulation, fiber communication, and quantum optics. The PV beam is typically generated from the Fourier transformation of the Bessel–Gauss beam. However, the conventional method to produce PV beams requires a series of bulky optical components, which greatly increases the system complexity and also hinders the photonic device integration. Here, plasmonic metasurfaces made of rectangular‐hole nanoantennas as integrated beam converters are designed and demonstrated to generate focused 3D PV beams in a broad wavelength range, by combining the phase profiles of axicon, spiral phase plate, and Fourier transform lens simultaneously based on the Pancharatnam–Berry phase. It is demonstrated that the PV beam structures can be adjusted by varying several control parameters in the metasurface design. Moreover, multiple PV beams with arbitrary arrangement and topological charges are also produced. These results have the promising potential for enabling new types of compact optical devices for tailoring complex light beams and advancing metasurface‐based functional integrated photonic chips.
more »
« less
Structured Light Generation Using Angle‐Multiplexed Metasurfaces
Abstract On the basis of the Jones matrix, independent control over the amplitude and phase of light has been demonstrated by combining several meta‐atoms into the supercell of a metasurface. However, due to the intrinsic limitation of a planar achiral structure, the maximum number of independent, complex elements in one Jones matrix is three, giving rise to up to three‐channel amplitude and phase control. In this work, more Jones matrices corresponding to different angles of incidence are proposed to add, so that the degrees of freedom in the amplitude and phase control can be further increased. The supercell of the designed metasurfaces consists of three dielectric nanoblocks with predefined rotation angles and displacements in the 2D space, which can be inversely determined with the help of the genetic algorithm. Empowered by the ability to realize four‐ or even eight‐channel amplitude and phase control, the generation of multiple structured light, including two independent perfect Poincaré beams, two double‐ring perfect Poincaré beams, two perfect Poincaré beam arrays, and four vector vortex beam arrays, is numerically demonstrated. Such novel designs are expected to benefit the development of modern optical applications, including but not limited to optical communications, quantum information, and signal encryption.
more »
« less
- PAR ID:
- 10419144
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Optical Materials
- Volume:
- 11
- Issue:
- 16
- ISSN:
- 2195-1071
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Metasurfaces are optically thin metamaterials that promise complete control of the wavefront of light but are primarily used to control only the phase of light. Here, we present an approach, simple in concept and in practice, that uses meta-atoms with a varying degree of form birefringence and rotation angles to create high-efficiency dielectric metasurfaces that control both the optical amplitude and phase at one or two frequencies. This opens up applications in computer-generated holography, allowing faithful reproduction of both the phase and amplitude of a target holographic scene without the iterative algorithms required in phase-only holography. We demonstrate all-dielectric metasurface holograms with independent and complete control of the amplitude and phase at up to two optical frequencies simultaneously to generate two- and three-dimensional holographic objects. We show that phase-amplitude metasurfaces enable a few features not attainable in phase-only holography; these include creating artifact-free two-dimensional holographic images, encoding phase and amplitude profiles separately at the object plane, encoding intensity profiles at the metasurface and object planes separately, and controlling the surface textures of three-dimensional holographic objects.more » « less
-
Abstract Metasurfaces, as a two-dimensional (2D) version of metamaterials, have drawn considerable attention for their revolutionary capability in manipulating the amplitude, phase, and polarization of light. As one of the most important types of metasurfaces, geometric metasurfaces provide a versatile platform for controlling optical phase distributions due to the geometric nature of the generated phase profile. However, it remains a great challenge to design geometric metasurfaces for realizing spin-switchable functionalities because the generated phase profile with the converted spin is reversed once the handedness of the incident beam is switched. Here, we propose and experimentally demonstrate chiral geometric metasurfaces based on intrinsically chiral plasmonic stepped nanoapertures with a simultaneously high circular dichroism in transmission (CDT) and large cross-polarization ratio (CPR) in transmitted light to exhibit spin-controlled wavefront shaping capabilities. The chiral geometric metasurfaces are constructed by merging two independently designed subarrays of the two enantiomers for the stepped nanoaperture. Under a certain incident handedness, the transmission from one subarray is allowed, while the transmission from the other subarray is strongly prohibited. The merged metasurface then only exhibits the transmitted signal with the phase profile of one subarray, which can be switched by changing the incident handedness. Based on the chiral geometric metasurface, both chiral metasurface holograms and the spin-dependent generation of hybrid-order Poincaré sphere beams are experimentally realized. Our approach promises further applications in spin-controlled metasurface devices for complex beam conversion, image processing, optical trapping, and optical communications.more » « less
-
A moiré photonic crystal is an optical analog of twisted graphene. A 3D moiré photonic crystal is a new nano-/microstructure that is distinguished from bilayer twisted photonic crystals. Holographic fabrication of a 3D moiré photonic crystal is very difficult due to the coexistence of the bright and dark regions, where the exposure threshold is suitable for one region but not for the other. In this paper, we study the holographic fabrication of 3D moiré photonic crystals using an integrated system of a single reflective optical element (ROE) and a spatial light modulator (SLM) where nine beams (four inner beams + four outer beams + central beam) are overlapped. By modifying the phase and amplitude of the interfering beams, the interference patterns of 3D moiré photonic crystals are systemically simulated and compared with the holographic structures to gain a comprehensive understanding of SLM-based holographic fabrication. We report the holographic fabrication of phase and beam intensity ratio-dependent 3D moiré photonic crystals and their structural characterization. Superlattices modulated in the z-direction of 3D moiré photonic crystals have been discovered. This comprehensive study provides guidance for future pixel-by-pixel phase engineering in SLM for complex holographic structures.more » « less
-
Abstract Structured lights, including beams carrying spin and orbital angular momenta, radially and azimuthally polarized vector beams, as well as spatiotemporal optical vortices, have attracted significant interest due to their unique amplitude, phase front, polarization, and temporal structures, enabling a variety of applications in optical and quantum communications, micromanipulation, and super‐resolution imaging. In parallel, structured optical materials, metamaterials, and metasurfaces consisting of engineered unit cells—meta‐atoms, opened new avenues for manipulating the flow of light and optical sensing. While several studies explored structured light effects on the individual meta‐atoms, their shapes are largely limited to simple spherical geometries. However, the synergy of the structured light and complex‐shaped meta‐atoms has not been fully explored. In this paper, the role of the helical wavefront of Laguerre–Gaussian beams in the excitation and suppression of higher‐order resonant modes inside all‐dielectric meta‐atoms of various shapes, aspect ratios, and orientations, is demonstrated and the excitation of various multipolar moments that are not accessible via unstructured light illumination is predicted. The presented study elucidates the role of the complex phase distribution of the incident light in shape‐dependent resonant scattering, which is of utmost importance in a wide spectrum of applications ranging from remote sensing to spectroscopy.more » « less
An official website of the United States government
