Sub-resonance tapping (SRT) mode of atomic force microscopy (AFM) enables researchers to image surfaces with well-controlled load forces and to collect maps of multiple physical properties of samples. The major bottleneck of this mode is a relatively low scan speed compared to other scanning modes. This paper presents a novel control algorithm that substantially improves the scanning speed over the standard SRT. We propose naming the new modality Trajectory Tracking SRT (TT-SRT). In contrast with the standard SRT control, TT-SRT uses the feedback within every single touch of the sample by the AFM probe. To demonstrate the advantage of TT-SRT, we conduct scans on a variety of samples with differing topologies, roughnesses, and mechanical properties. Each sample region is scanned with both standard SRT and TT-SRT at the same set of speeds. The control gains are tuned before each scan for maximum performance in each mode. Performance is evaluated by selecting a given level of image quality and finding the maximum speed that can be achieved by each algorithm. We find that with increased demand for data quality, the utility of TT-SRT becomes more apparent; for example, the speed of TT-SRT can be ten times faster or more than standard SRT for a reasonable expectation of data quality.
- PAR ID:
- 10420373
- Date Published:
- Journal Name:
- Nanotechnology
- ISSN:
- 0957-4484
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
There is considerable interest in measuring, with nanoscale spatial resolution, the physical properties of lipid membranes because of their role in the physiology of living systems. Due to its ability to nondestructively image surfaces in solution, tapping mode atomic force microscopy (TMAFM) has proven to be a useful technique for imaging lipid membranes. However, further information concerning the mechanical properties of surfaces is contained within the time-resolved tip/sample force interactions. The tapping forces can be recovered by taking the second derivative of the cantilever deflection signal and scaling by the effective mass of the cantilever; this technique is referred to as scanning probe acceleration microscopy. Herein, we describe how the maximum and minimum tapping forces change with surface mechanical properties. Furthermore, we demonstrate how these changes can be used to measure mechanical changes in lipid membranes containing cholesterol.more » « less
-
Abstract Resolution and field-of-view often represent a fundamental tradeoff in microscopy. Atomic force microscopy (AFM), in which a cantilevered probe deflects under the influence of local forces as it scans across a substrate, is a key example of this tradeoff with high resolution imaging being largely limited to small areas. Despite the tremendous impact of AFM in fields including materials science, biology, and surface science, the limitation in imaging area has remained a key barrier to studying samples with intricate hierarchical structure. Here, we show that massively parallel AFM with >1000 probes is possible through the combination of a cantilever-free probe architecture and a scalable optical method for detecting probe–sample contact. Specifically, optically reflective conical probes on a comparatively compliant film are found to comprise a distributed optical lever that translates probe motion into an optical signal that provides sub-10 nm vertical precision. The scalability of this approach makes it well suited for imaging applications that require high resolution over large areas.
-
Abstract Electric-field-assisted atomic force microscope (E-AFM) nanolithography is a novel polymer-patterning technique that has diverse applications. E-AFM uses a biased AFM tip with conductive coatings to make patterns with little probe-sample interaction, which thereby avoids the tip wear that is a major issue for contact-mode AFM-based lithography, which usually requires a high probe-sample contact force to fabricate nanopatterns; however, the relatively large tip radius and large tip-sample separation limit its capacity to fabricate high-resolution nanopatterns. In this paper, we developed a contact mode E-AFM nanolithography approach to achieve high-resolution nanolithography of poly (methyl methacrylate) (PMMA) using a conductive AFM probe with a low stiffness (~0.16 N/m). The nanolithography process generates features by biasing the AFM probe across a thin polymer film on a metal substrate. A small constant force (0.5-1 nN) applied on the AFM tip helps engage the tip-film contact, which enhances nanomachining resolution. This E-AFM nanolithography approach enables high-resolution nanopatterning with feature width down to ~16 nm, which is less than one half of the nominal tip radius of the employed conductive AFM probes.more » « less
-
Magnetic force microscopy (MFM) is an atomic force microscopy (AFM)-based technique to map magnetic domains in a sample. MFM is widely used to characterize magnetic recording media, magnetic domain walls in materials, nanoparticles and more recently iron deposits in biological samples. However, conventional MFM requires multiple scans of the samples, suffers from various artifacts and is limited in its capability for multimodal imaging or imaging in a fluid environment. We propose a new modality, namely indirect magnetic force microscopy (ID-MFM), a technique that employs an ultrathin barrier between the probe and the sample. Using fluorescently conjugated superparamagnetic nanoparticles, we demonstrate how ID-MFM can be achieved using commercially available silicon nitride windows, MFM probes and AFM equipment. The MFM signals obtained using ID-MFM were comparable to those obtained using conventional MFM. Further, samples prepared for ID-MFM were compatible with multi-modal imaging via fluorescence and transmission electron microscopy. Thus ID-MFM can serve as a high-throughput, multi-modal microscopy technique which can be especially attractive for detecting magnetism in nanoparticles and biological samples.more » « less