skip to main content


Title: From lab to lamp: Understanding downconverter degradation in LED packages
Downconverters, primarily inorganic phosphors, are critical components in white solid-state LED-based lighting and liquid crystal display backlights. Research efforts have led to a fundamental understanding of a downconverter's absorption, photoluminescence, and efficiency as a function of composition, structure, and processing conditions. However, considerably less work has focused on the reliability of phosphors once they are incorporated into LED packages. Solving these issues is often the final step before the commercialization of new materials, but the significant resources and time required to evaluate and mitigate materials failure are rarely discussed in the literature. In this Perspective, we discuss the need for conducting downconverter reliability testing and the potential of accelerating, screening, and understanding downconverter failure modes. Our focus highlights the mechanisms of failure and discusses how this influences materials selection and the design of different LED packages. We also stress the potential for accelerated reliability testing protocols and note the potential role first-principles calculations and data-driven models could play in establishing the compositional-processing trends for different aspects of downconverter reliability. We close with possible research directions that could improve downconverter reliability and emphasize the importance of assessing a material's (chemical) stability where multiple manufacturing and processing steps can dictate system performance.  more » « less
Award ID(s):
1911311
NSF-PAR ID:
10422388
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
132
Issue:
19
ISSN:
0021-8979
Page Range / eLocation ID:
190901
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Structural components such as printed circuit boards (PCBs) are critical in the thermomechanical reliability assessment of electronic packages. Previous studies have shown that geometric parameters such as thickness and mechanical properties like elastic modulus of PCBs have direct influence on the reliability of electronic packages. Elastic material properties of PCBs are commonly characterized using equipment such as tensile testers and used in computational studies. However, in certain applications viscoelastic material properties are important. Viscoelastic influence on materials is evident when one exceeds the glass transition temperature of materials. Operating conditions or manufacturing conditions such as lamination and soldering may expose components to temperatures that exceed the glass transition temperatures. Knowing the viscoelastic behavior of the different components of electronic packages is important in order to perform accurate reliability assessment and design components such as printed circuit boards (PCBs) that will remain dimensionally stable after the manufacturing process. Previous researchers have used creep and stress relaxation test data to obtain the Prony series terms that represent the viscoelastic behavior and perform analysis. Others have used dynamic mechanical analysis in order to obtain frequency domain master curves that were converted to time domain before obtaining the Prony series terms. In this paper, nonlinear solvers were used on frequency domain master curve results from dynamic mechanical analysis to obtain Prony series terms and perform finite element analysis on the impact of adding viscoelastic properties when performing reliability assessment. The computational study results were used to perform comparative assessment to understand the impact of including viscoelastic behavior in reliability analysis under thermal cycling and drop testing for Wafer Level Chip Scale Packages. 
    more » « less
  2. null (Ed.)
    Thermal conductive gap filler materials are used as thermal interface materials (TIMs) in electronic devices due their numerous advantages, such as higher thermal conductivity, ease of use, and conformity. Silicone is a class of synthetic materials based on a polymeric siloxane backbone which is widely used in thermal gap filler materials. In electronic packages, silicone-based thermal gap filler materials are widely used in industries, whereas silicone-free thermal gap filler materials are emerging as new alternatives for numerous electronics applications. Certainly, characterization of these TIMs is of immense importance since it plays a critical role in heat dissipation and long-term reliability of the electronic packages. Insubstantial studies on the effects of various chemical compounds on the properties of silicone-based and silicone-free TIMs has led to this study, which focuses on the effect of thermal aging on the mechanical, thermal, and dielectric properties of silicone-based and silicone-free TIMs and the chemical compounds that cause the changes in properties of these materials. Characterization techniques such as dynamic mechanical analysis (DMA), thermomechanical analysis (TMA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and broadband dielectric spectroscopy (BbDS) are used to study the mechanical, thermal, and dielectric characteristics of these TIMs, which will guide towards a better understanding of the applicability and reliability of these TIMs. The experiments demonstrate that upon thermal aging at 125 °C, the silicone-free TIM becomes hard, while silicone-based TIM remains viscoelastic, which indicates its wide applicability to higher temperature applications for a long time. Though silicone-based TIM displays better mechanical and thermal properties at elevated temperatures, dielectric properties indicate low conductivity for silicone-free TIM, which makes it a better candidate for silicone-sensitive applications where higher electric insulation is desired. 
    more » « less
  3. Abstract

    The electrical resistance of metal-polymer conductive inks increases as they undergo cyclic loading, posing a major challenge to their reliability as interconnect materials for flexible electronic devices. To characterize an ink’s fatigue performance, extensive electro-mechanical testing is usually performed. Phenomenological models that can accurately predict the resistance increase with cyclic loading can save time and be useful in flexible conductor design against fatigue failure. One such model was recently developed for only one composite ink type. The model is based on experiments monitoring resistance under monotonic stretch data and multiple experiments measuring the rate of increase of the resistance under different strain amplitudes and mean strains. The current work examines whether such resistance rate model could be generalized to apply for more types of composite inks. Two composite inks with different binder material, metal flake sizes and shapes, and substrate material were experimentally tested under monotonic and cyclic loading. It was found that the two new inks are also more sensitive to strain amplitude than mean strain. The resistance rate model accurately predicts early/catastrophic failure (<1000 cycles) in all inks and conservatively estimates high fatigue life for low strain amplitudes. A protocol detailing the procedures for applying the resistance model to new inks is outlined.

     
    more » « less
  4. An increasing desire for higher application temperatures and complex geometries for metallic materials has spurred significant development in additive manufacturing (AM) of metal-ceramic composites; however, limited process-microstructure-properties relationships exist for these materials and processing strategies. Herein we investigate the processing window and high-temperature oxidation performance of an in situ reactive, oxidation-resistant titanium metal-matrix composite reinforced with boron nitride (BN) and boron carbide (B4C) via selective laser melting (SLM) to understand the effects of processing parameters on the in situ reactive characteristics and their effects on build reliability and high-temperature oxidation performance. SLM processing required a 50% decrease in overall energy density relative to titanium's optimal parameters to avoid processing failure due to the high in situ reactivity and exothermic reaction between feedstock materials. A precise balance was necessary to combine decreasing the input energy to avoid cracking due to in situ reactivity while simultaneously providing enough input energy to keep the bulk density as high as possible to limit porosity that contributes to processing inconsistencies at low input energy. Process optimization resulted in composites with as high as 98.3% relative density, comparable to some of the best composites reported in the literature, and high-temperature oxidation testing revealed a 39% decrease in oxidation mass gain compared to Ti6Al4V, owing directly to ceramic reinforcement. Our results indicate that control of SLM processing parameters can yield advanced composites with enhanced properties and characteristics compared to the base material, revealing an array of design possibilities for researchers and engineers in many fields. 
    more » « less
  5. Summary

    Integrating genomic information with traditional clinical risk factors to improve the prediction of disease outcomes could profoundly change the practice of medicine. However, the large number of potential markers and possible complexity of the relationship between markers and disease make it difficult to construct accurate risk prediction models. Standard approaches for identifying important markers often rely on marginal associations or linearity assumptions and may not capture non-linear or interactive effects. In recent years, much work has been done to group genes into pathways and networks. Integrating such biological knowledge into statistical learning could potentially improve model interpretability and reliability. One effective approach is to employ a kernel machine (KM) framework, which can capture nonlinear effects if nonlinear kernels are used (Scholkopf and Smola, 2002; Liu et al., 2007, 2008). For survival outcomes, KM regression modeling and testing procedures have been derived under a proportional hazards (PH) assumption (Li and Luan, 2003; Cai, Tonini, and Lin, 2011). In this article, we derive testing and prediction methods for KM regression under the accelerated failure time (AFT) model, a useful alternative to the PH model. We approximate the null distribution of our test statistic using resampling procedures. When multiple kernels are of potential interest, it may be unclear in advance which kernel to use for testing and estimation. We propose a robust Omnibus Test that combines information across kernels, and an approach for selecting the best kernel for estimation. The methods are illustrated with an application in breast cancer.

     
    more » « less