skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Influence of Loop Current and eddy shedding on subseasonal sea level variability along the western Gulf Coast
Mechanisms that generate subseasonal (1-2 months) events of sea level rise along the western Gulf Coast are investigated using the data collected by a dense tide gauge network: Texas Coastal Ocean Observation Network (TCOON) and National Water Level Observation Network (NWLON), satellite altimetry, and high-resolution (0.08°) ocean reanalysis product. In particular, the role of Loop Current and eddy shedding in generating the extreme sea level rise along the coast is emphasized. The time series of sea level anomalies along the western portion of the Gulf Coast derived from the TCOON and NWLON tide gauge data indicate that a subseasonal sea level rise which exceeds 15 cm is observed once in every 2-5 years. Based on the analysis of satellite altimetry data and high-resolution ocean reanalysis product, it is found that most of such extreme subseasonal events are originated from the anti-cyclonic (warm-core) eddy separated from the Loop Current which propagates westward. A prominent sea level rise is generated when the eddy reaches the western Gulf Coast, which occurs about 6-8 months after the formation of strong anti-cyclonic eddy in the central Gulf of Mexico. The results demonstrate that the accurate prediction of subseasonal sea level rise events along the Gulf Coast with the lead time of several months require a full description of large-scale ocean dynamical processes in the entire Gulf of Mexico including the characteristics of eddies separated from the Loop Current.  more » « less
Award ID(s):
2019758
PAR ID:
10422686
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
9
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Accurate and timely water level predictions are essential for effective shoreline and coastal ecosystem management. As sea levels rise, the frequency and severity of coastal inundation events are increasing, causing significant societal and economic impacts. Predicting these events with sufficient lead time is essential for decision-makers to mitigate economic losses and protect coastal communities. While machine learning methods have been developed to predict water levels at specific sites, there remains a need for more generalized models that perform well across diverse locations. This study presents a robust deep learning model for predicting water levels at multiple tide gauge locations along the Gulf of Mexico, including the open coast, embayments, and ship channels, all near major ports. The selected architecture, Seq2Seq, achieves significant improvements over the existing literature. It meets the National Oceanic and Atmospheric Administration’s (NOAA) operational criterion, with the percentage of predictions within 15 cm for lead times up to 108 h at the tide gauges of Port Isabel (92.2%) and Rockport (90.4%). These results represent a significant advancement over current models typically failing to meet NOAA’s standard beyond 48 h. This highlights the potential of deep learning models to improve water level predictions, offering crucial support for coastal management and flood mitigation. 
    more » « less
  2. Abstract Relative sea level rise at tide gauge Galveston Pier 21, Texas, is the combination of absolute sea level rise and land subsidence. We estimate subsidence rates of 3.53 mm/a during 1909–1937, 6.08 mm/a during 1937–1983, and 3.51 mm/a since 1983. Subsidence attributed to aquifer-system compaction accompanying groundwater extraction contributed as much as 85% of the 0.7 m relative sea level rise since 1909, and an additional 1.9 m is projected by 2100, with contributions from land subsidence declining from 30 to 10% over the projection interval. We estimate a uniform absolute sea level rise rate of 1.10 mm ± 0.19/a in the Gulf of Mexico during 1909–1992 and its acceleration of 0.270 mm/a2at Galveston Pier 21 since 1992. This acceleration is 87% of the value for the highest scenario of global mean sea level rise. Results indicate that evaluating this extreme scenario would be valid for resource-management and flood-hazard-mitigation strategies for coastal communities in the Gulf of Mexico, especially those affected by subsidence. 
    more » « less
  3. Pan, J (Ed.)
    Abstract The Gulf Stream, a major ocean current in the North Atlantic ocean is a key component in the global redistribution of heat and is important for marine ecosystems. Based on 27 years (1993–2019) of wind reanalysis and satellite altimetry measurements, we present observational evidence that the path of this freely meandering jet after its separation from the continental slope at Cape Hatteras, aligns with the region of maximum cyclonic vorticity of the wind stress field known as the positive vorticity pool. This synchronicity between the wind stress curl maximum region and the Gulf Stream path is observed at multiple time-scales ranging from months to decades, spanning a distance of 1500 km between 70 and 55W. The wind stress curl in the positive vorticity pool is estimated to drive persistent upward vertical velocities ranging from 5 to 17 cm day−1over its ~ 400,000 km2area; this upwelling may supply a steady source of deep nutrients to the Slope Sea region, and can explain as much as a quarter of estimated primary productivity there. 
    more » « less
  4. Elsevier Publishing Company (Ed.)
    Loop Current Frontal Eddies (LCFEs) are known to intensify and assist in the Loop Current (LC) eddy shedding. In addition to interacting with the LC, these eddies also modify the circulation in the eastern Gulf of Mexico by attracting water and passive tracers such as chlorophyll, Mississippi freshwater, and pollutants to the LC-LCFE front. During the 2010 Deepwater Horizon oil spill, part of the oil was entrained not only in the LC-LCFE front but also inside an LCFE, where it remained for weeks. This study assesses the ability of the LCFEs to transport water and passive tracers without exchange with the exterior (i.e., Lagrangian coherence) using altimetry and a high-resolution model. The following open questions are answered: (1) How long can the LCFEs remain Lagrangian coherent at and below the surface? (2) What is the source of water for the formation of LCFEs? (3) Can the formation of Lagrangian coherent LCFEs attract shelf water? Strong frontal eddies leading to LC eddy shedding are investigated using a 1-km resolution model for the Gulf of Mexico and altimetry. The results show that LCFEs are composed of waters originating from the outer band of the LC front, the region north of the LC, and the western West Florida Shelf and Mississippi/Alabama/Florida shelf, and potentially drive cross-shelf exchange of particles, water properties, and nutrients. At depth (≈180 m), most LCFE water comes from the outer band of the LC front in the form of smaller frontal eddies. Once formed, LCFEs can transport water and passive tracers in their interior without exchange with the exterior for weeks: these eddies remained Lagrangian coherent for up to 25 days in the altimetry dataset and 18 days at the surface and 29 days at depth (≈180 m) in the simulation. LCFE can remain Lagrangian coherent up to a depth of ≈ 560 m. Additional analyses show that the LCFE involved in the Deepwater Horizon oil spill formed from water near the oil rig location, in agreement with previous studies. Temperature-salinity diagrams from a high-resolution model and aircraft expendable profilers show that LCFEs are composed of Gulf of Mexico water as opposed to LC water. Therefore, LCFE formation and propagation actively modify the surrounding circulation and affect the evolution of the flow and the transport of oil and other passive tracers in the Eastern Gulf of Mexico. 
    more » « less
  5. Abstract High‐tide flooding—minor, disruptive coastal inundation—is expected to become more frequent as sea levels rise. However, quantifying just how quickly high‐tide flooding rates are changing, and whether some places experience more high‐tide flooding than others, is challenging. To quantify trends in high‐tide flooding from tide‐gauge observations, flood thresholds—elevations above which flooding begins—must be specified. Past studies of high‐tide flooding in the United States have used different data sets and approaches for specifying flood thresholds, only some of which directly relate to coastal impacts, which has lead to sometimes conflicting and ambiguous results. Here we present a novel method for quantifying, with uncertainty, high‐tide flooding thresholds along the United States coast based on sparsely available impact‐based flood thresholds. We use those newly modeled thresholds to make an updated assessment of changes in high‐tide flooding across the United States over the past few decades. From 1990–2000 to 2010–2020, high‐tide flooding rates almost certainly (probability ) increased along the United States East Coast, Gulf Coast, California, and Pacific Islands, while they very likely decreased along Alaska during that time; significant changes in high‐tide flooding rates between the two decades were not detected in Oregon, Washington, and the Caribbean. Averaging spatially, we find that high‐tide flooding rates probably more than doubled nationally between 1990–2000 and 2010–2020. Our approach lays a foundation for future studies to more accurately model high‐tide flood thresholds and trends along the global coastline. 
    more » « less