Abstract Bedrock vadose zone water storage (i.e., rock moisture) dynamics are rarely observed but potentially key to understanding drought responses. Exploiting a borehole network at a Mediterranean blue oak savanna site—Rancho Venada—we document how water storage capacity in deeply weathered bedrock profiles regulates woody plant water availability and groundwater recharge. The site is in the Northern California Coast Range within steeply dipping turbidites. In a wet year (water year 2019; 647 mm of precipitation), rock moisture was quickly replenished to a characteristic storage capacity, recharging groundwater that emerged at springs to generate streamflow. In the subsequent rainless summer growing season, rock moisture was depleted by about 93 mm. In two drought years that followed (212 and 121 mm of precipitation) the total amount of rock moisture gained each winter was about 54 and 20 mm, respectively, and declines were documented exceeding these amounts, resulting in progressively lower rock moisture content. Oaks, which are rooted into bedrock, demonstrated signs of water stress in drought, including reduced transpiration rates and extremely low water potentials. In the 2020–2021 drought, precipitation did not exceed storage capacity, resulting in variable belowground water storage, increased plant water stress, and no recharge or runoff. Rock moisture deficits (rather than soil moisture deficits) explain these responses.
more »
« less
Ecohydrologic Dynamics of Rock Moisture in a Montane Catchment of the Colorado Front Range
Abstract Warming across the western United States continues to reduce snowpack, lengthen growing seasons, and increase atmospheric demand, leading to uncertainty about moisture availability in montane forests. As many upland forests have thin soils and extensive rooting into weathered bedrock, deep vadose‐zone water may be a critical late‐season water source for vegetation and mitigate forest water stress. A key impediment to understanding the role of the deep vadose zone as a reservoir is quantifying the plant‐available water held there. We quantify the spatiotemporal dynamics of rock moisture held in the deep vadose zone in a montane catchment of the Rocky Mountains. Direct measurements of rock moisture were accompanied by monitoring of precipitation, transpiration, soil moisture, leaf‐water potentials, and groundwater. Using repeat nuclear magnetic resonance and neutron‐probe measurements, we found depletion of rock moisture among all our monitored plots. The magnitude of growing season depletion in rock moisture mirrored above‐ground vegetation density and transpiration, and depleted rock moisture was from ∼0.3 to 5 m below ground surface. Estimates of storage indicated weathered rock stored at least 4%–12% of mean annual precipitation. Persistent transpiration and discrepancies between estimated soil matric potentials and leaf‐water potentials suggest rock moisture may mitigate drought stress. These findings provide some of the first measurements of rock moisture use in the Rocky Mountains and indicated rock moisture use is not just confined to periods of drought or Mediterranean climates.
more »
« less
- PAR ID:
- 10426302
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 59
- Issue:
- 6
- ISSN:
- 0043-1397
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The spatiotemporal dynamics of plant water sources are hidden and poorly understood. We document water source use ofQuercus garryanagrowing in Northern California on a profile of approximately 50 cm of soil underlain by 2–4 m of weathered bedrock (sheared shale mélange) that completely saturates in winter, when the oaks lack leaves, and progressively dries over the summer. We determined oak water sources by combining observations of water stable isotope composition, vadose zone moisture and groundwater dynamics, and metrics of tree water status (potential) and use (sapflow). During the spring, oak xylem water is isotopically similar to the seasonal groundwater and shallow, evaporatively enriched soil moisture pools. However, as soils dry and the water table recedes to the permanently saturated, anoxic, low‐conductivity fresh bedrock boundary,Q. garryanashifts to using a water source with a depleted isotopic composition that matches residual moisture in the deep soil and underlying weathered bedrock vadose zone. Sapflow rates remain high as late‐summer predawn water potentials drop below−2.5 MPa. Neutron probe surveys reveal late‐summer rock moisture declines under the oaks in contrast to constant rock moisture levels under grass‐dominated areas. We therefore conclude that the oaks temporarily use seasonal groundwater when it occupies the weathered profile but otherwise use deep unsaturated zone moisture after seasonal groundwater recedes. The ample moisture, connected porosity, and oxygenated conditions of the weathered bedrock vadose zone make it a key tree water resource during the long summer dry season of the local Mediterranean climate.more » « less
-
Abstract. Plant roots act as critical pathways of moisture from the subsurface to the atmosphere. Deep moisture uptake by plant roots can provide a seasonal buffer mechanism in regions with a well-defined dry season, such as the southern Amazon. Here, mature forests maintain transpiration (a critical source of atmospheric moisture in this part of the world) during drier months. Most existing state-of-the-art Earth system models do not have the necessary features to simulate subsurface-to-atmosphere moisture variations during dry-downs. These features include groundwater dynamics, a sufficiently deep soil column, dynamic root water uptake (RWU), and a fine model spatial resolution (<5 km). To address this, we present DynaRoot, a dynamic root water uptake scheme implemented in the Noah-Multiparameterization (Noah-MP) land surface model, a widely used model for studying kilometer-scale regional land surface processes. Our modifications include the implementation of DynaRoot, eight additional resolved soil layers reaching a depth of 20 mm, and soil properties that vary with depth. DynaRoot is computationally efficient and ideal for regional- or continental-scale climate simulations. We perform four 20-year uncoupled Noah-MP experiments for a region in the southern Amazon basin. Each experiment incrementally adds physical complexity. The experiments include the default Noah-MP with free drainage (FD), a case with an activated groundwater scheme that resolves water table variations (GW), a case with eight added soil layers and soil properties that vary with depth (SOIL), and a case with DynaRoot activated (ROOT). Our results show that DynaRoot allows mature forests in upland regions to avoid water stress during dry periods by taking up moisture from the deep vadose zone (where antecedent precipitation still drains downward). Conversely, RWU in valleys can access moisture from groundwater (while remaining constrained by the water table). Temporally, we capture a seasonal shift in RWU from shallower layers in wetter months to deeper soil layers in drier months, particularly over regions with dominant evergreen broadleaf (forest) vegetation. Compared to the control case, there is a domain-averaged increase in transpiration of about 29 % during dry months in the ROOT experiment. Critically, the ROOT experiment performs best in simulating the temporal evolution of dry-season transpiration using an observation-based ET (evapotranspiration) product as the reference. Future work will explore the effect of the DynaRoot uptake scheme on atmospheric variables in a coupled modeling framework.more » « less
-
Water-use efficiency (WUE), weighing the balance between plant transpiration and growth, is a key characteristic of ecosystem functioning and a component of tree drought resistance. Seasonal dynamics of tree-level WUE and its connections with drought variability have not been previously explored in sky-island montane forests. We investigated whole-tree transpiration and stem growth of bristlecone ( Pinus longaeva ) and limber pine ( Pinus flexilis ) within a high-elevation stand in central-eastern Nevada, United States, using sub-hourly measurements over 5 years (2013–2017). A moderate drought was generally observed early in the growing season, whereas interannual variability of summer rains determined drought levels between years, i.e., reducing drought stress in 2013–2014 while enhancing it in 2015–2017. Transpiration and basal area increment (BAI) of both pines were coupled throughout June–July, resulting in a high but relatively constant early season WUE. In contrast, both pines showed high interannual plasticity in late-season WUE, with a predominant role of stem growth in driving WUE. Overall, bristlecone pine was characterized by a lower WUE compared to limber pine. Dry or wet episodes in the late growing season overrode species differences. Our results suggested thresholds of vapor pressure deficit and soil moisture that would lead to opposite responses of WUE to late-season dry or wet conditions. These findings provide novel insights and clarify potential mechanisms modulating tree-level WUE in sky-island ecosystems of semi-arid regions, thereby helping land managers to design appropriate science-based strategies and reduce uncertainties associated with the impact of future climatic changes.more » « less
-
Urbanization causes changes in near-surface meteorology and rainfall-runoff relationships that threaten to place hydraulic stress on vegetation. The goal of this study was to investigate the differences in riparian zone tree hydration state, as indicated by leaf water potential, between an urban and a rural stream site, and to understand how the trees respond differently to precipitation events. At the rural stream site, the streambed was dry due to persistent drought conditions, whereas the urban stream site had established flow due to urban water inputs. The trees at the urban site were found to suffer less hydraulic stress than the trees at the rural site, as indicated by predawn leaf water potential measurements. Additionally, trees at the rural site were found to regulate stomatal openness to reduce transpiration on the day before rain, but not after, due to the presence of near-surface moisture introduced by the rain event. Trees at the urban site did not have to regulate stomatal openness before or after the rain, as the established flow in the stream provided consistent water access. These findings support the viability of protecting and preserving riparian ecosystems in urban settings.more » « less
An official website of the United States government
