skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Text Query based Traffic Video Event Retrieval with Global-Local Fusion Embedding
Retrieving event videos based on textual description is a promising research topic in the fast-growing data field. Since traffic data increases every day, there is an essential need of an intelligent traffic system to speed up the traffic event search. We propose a multi-module system that outputs accurate results. Our solution considers neighboring entities related to the mentioned object to represent an event by rule-based, which can represent an event by the relationship of multiple objects. We also propose to add a modified model from last year's Alibaba model with an explainable architecture. As the traffic data is vehicle-centric, we apply two language and image modules to analyze the input data and obtain the global properties of the context and the internal attributes of the vehicle. We introduce a one-on-one dual training strategy for each representation vector to optimize the interior features for the query. Finally, a refinement module gathers previous results to enhance the final retrieval result. We benchmarked our approach on the data of the AI City Challenge 2022 and obtained the competitive results at an MMR of 0.3611. We were ranked in the top 4 on 50\% of the test set and in the top 5 on the full set.  more » « less
Award ID(s):
2025234
PAR ID:
10428272
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
CVPR 2022 Workshop
Page Range / eLocation ID:
3133 to 3140
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Retrieving event videos based on textual description is a promising research topic in the fast-growing data field. Since traffic data increases every day, there is an essential need of an intelligent traffic system to speed up the traffic event search. We propose a multi-module system that outputs accurate results. Our solution considers neighboring entities related to the mentioned object to represent an event by rule-based, which can represent an event by the relationship of multiple objects. We also propose to add a modified model from last year's Alibaba model with an explainable architecture. As the traffic data is vehicle-centric, we apply two language and image modules to analyze the input data and obtain the global properties of the context and the internal attributes of the vehicle. We introduce a one-on-one dual training strategy for each representation vector to optimize the interior features for the query. Finally, a refinement module gathers previous results to enhance the final retrieval result. We benchmarked our approach on the data of the AI City Challenge 2022 and obtained the competitive results at an MMR of 0.3611. We were ranked in the top 4 on 50\% of the test set and in the top 5 on the full set. 
    more » « less
  2. null (Ed.)
    Traffic event retrieval is one of the important tasks for intelligent traffic system management. To find accurate candidate events in traffic videos corresponding to a specific text query, it is necessary to understand the text query's attributes, represent the visual and motion attributes of vehicles in videos, and measure the similarity between them. Thus we propose a promising method for vehicle event retrieval from a natural-language-based specification. We utilize both appearance and motion attributes of a vehicle and adapt the COOT model to evaluate the semantic relationship between a query and a video track. Experiments with the test dataset of Track 5 in AI City Challenge 2021 show that our method is among the top 6 with a score of 0.1560. 
    more » « less
  3. The traffic congestion hits most big cities in the world - threatening long delays and serious reductions in air quality. City and local government officials continue to face challenges in optimizing crowd flow, synchronizing traffic and mitigating threats or dangerous situations. One of the major challenges faced by city planners and traffic engineers is developing a robust traffic controller that eliminates traffic congestion and imbalanced traffic flow at intersections. Ensuring that traffic moves smoothly and minimizing the waiting time in intersections requires automated vehicle detection techniques for controlling the traffic light automatically, which are still challenging problems. In this paper, we propose an intelligent traffic pattern collection and analysis model, named TPCAM, based on traffic cameras to help in smooth vehicular movement on junctions and set to reduce the traffic congestion. Our traffic detection and pattern analysis model aims at detecting and calculating the traffic flux of vehicles and pedestrians at intersections in real-time. Our system can utilize one camera to capture all the traffic flows in one intersection instead of multiple cameras, which will reduce the infrastructure requirement and potential for easy deployment. We propose a new deep learning model based on YOLOv2 and adapt the model for the traffic detection scenarios. To reduce the network burdens and eliminate the deployment of network backbone at the intersections, we propose to process the traffic video data at the network edge without transmitting the big data back to the cloud. To improve the processing frame rate at the edge, we further propose deep object tracking algorithm leveraging adaptive multi-modal models and make it robust to object occlusions and varying lighting conditions. Based on the deep learning based detection and tracking, we can achieve pseudo-30FPS via adaptive key frame selection. 
    more » « less
  4. As a part of road safety initiatives, surrogate road safety approaches have gained popularity due to the rapid advancement of video collection and processing technologies. This paper presents an end-to-end software pipeline for processing traffic videos and running a safety analysis based on surrogate safety measures. We developed algorithms and software to determine trajectory movement and phases that, when combined with signal timing data, enable us to perform accurate event detection and categorization in terms of the type of conflict for both pedestrian-vehicle and vehicle-vehicle interactions. Using this information, we introduce a new surrogate safety measure, “severe event,” which is quantified by multiple existing metrics such as time-to-collision (TTC) and post-encroachment time (PET) as recorded in the event, deceleration, and speed. We present an efficient multistage event filtering approach followed by a multi-attribute decision tree algorithm that prunes the extensive set of conflicting interactions to a robust set of severe events. The above pipeline was used to process traffic videos from several intersections in multiple cities to measure and compare pedestrian and vehicle safety. Detailed experimental results are presented to demonstrate the effectiveness of this pipeline. 
    more » « less
  5. null (Ed.)
    For energy-efficient Connected and Automated Vehicle (CAV) Eco-driving control on signalized arterials under uncertain traffic conditions, this paper explicitly considers traffic control devices (e.g., road markings, traffic signs, and traffic signals) and road geometry (e.g., road shapes, road boundaries, and road grades) constraints in a data-driven optimization-based Model Predictive Control (MPC) modeling framework. This modeling framework uses real-time vehicle driving and traffic signal data via Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communications. In the MPC-based control model, this paper mathematically formulates location-based traffic control devices and road geometry constraints using the geographic information from High-Definition (HD) maps. The location-based traffic control devices and road geometry constraints have the potential to improve the safety, energy, efficiency, driving comfort, and robustness of connected and automated driving on real roads by considering interrupted flow facility locations and road geometry in the formulation. We predict a set of uncertain driving states for the preceding vehicles through an online learning-based driving dynamics prediction model. We then solve a constrained finite-horizon optimal control problem with the predicted driving states to obtain a set of Eco-driving references for the controlled vehicle. To obtain the optimal acceleration or deceleration commands for the controlled vehicle with the set of Eco-driving references, we formulate a Distributionally Robust Stochastic Optimization (DRSO) model (i.e., a special case of data-driven optimization models under moment bounds) with Distributionally Robust Chance Constraints (DRCC) with location-based traffic control devices and road geometry constraints. We design experiments to demonstrate the proposed model under different traffic conditions using real-world connected vehicle trajectory data and Signal Phasing and Timing (SPaT) data on a coordinated arterial with six actuated intersections on Fuller Road in Ann Arbor, Michigan from the Safety Pilot Model Deployment (SPMD) project. 
    more » « less