In this paper, we show that the finite subalgebra A R ( 1 ) \mathcal {A}^\mathbb {R}(1) , generated by S q 1 \mathrm {Sq}^1 and S q 2 \mathrm {Sq}^2 , of the R \mathbb {R} -motivic Steenrod algebra A R \mathcal {A}^\mathbb {R} can be given 128 different A R \mathcal {A}^\mathbb {R} -module structures. We also show that all of these A \mathcal {A} -modules can be realized as the cohomology of a 2 2 -local finite R \mathbb {R} -motivic spectrum. The realization results are obtained using an R \mathbb {R} -motivic analogue of the Toda realization theorem. We notice that each realization of A R ( 1 ) \mathcal {A}^\mathbb {R}(1) can be expressed as a cofiber of an R \mathbb {R} -motivic v 1 v_1 -self-map. The C 2 {\mathrm {C}_2} -equivariant analogue of the above results then follows because of the Betti realization functor. We identify a relationship between the R O ( C 2 ) \mathrm {RO}({\mathrm {C}_2}) -graded Steenrod operations on a C 2 {\mathrm {C}_2} -equivariant space and the classical Steenrod operations on both its underlying space and its fixed-points. This technique is then used to identify the geometric fixed-point spectra of the C 2 {\mathrm {C}_2} -equivariant realizations of A C 2 ( 1 ) \mathcal {A}^{\mathrm {C}_2}(1) . We find another application of the R \mathbb {R} -motivic Toda realization theorem: we produce an R \mathbb {R} -motivic, and consequently a C 2 {\mathrm {C}_2} -equivariant, analogue of the Bhattacharya-Egger spectrum Z \mathcal {Z} , which could be of independent interest.
more »
« less
Metric fixed point theory and partial impredicativity
We show that the Priess-Crampe & Ribenboim fixed point theorem is provable in R C A 0 . Furthermore, we show that Caristi’s fixed point theorem for both Baire and Borel functions is equivalent to the transfinite leftmost path principle, which falls strictly between A T R 0 and Π 1 1 - C A 0 . We also exhibit several weakenings of Caristi’s theorem that are equivalent to W K L 0 and to A C A 0 . This article is part of the theme issue ‘Modern perspectives in Proof Theory’.
more »
« less
- Award ID(s):
- 2054379
- PAR ID:
- 10429208
- Date Published:
- Journal Name:
- Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
- Volume:
- 381
- Issue:
- 2248
- ISSN:
- 1364-503X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Let $$u_{k}$$ u k be a solution of the Helmholtz equation with the wave number k , $$\varDelta u_{k}+k^{2} u_{k}=0$$ Δ u k + k 2 u k = 0 , on (a small ball in) either $${\mathbb {R}}^{n}$$ R n , $${\mathbb {S}}^{n}$$ S n , or $${\mathbb {H}}^{n}$$ H n . For a fixed point p , we define $$M_{u_{k}}(r)=\max _{d(x,p)\le r}|u_{k}(x)|.$$ M u k ( r ) = max d ( x , p ) ≤ r | u k ( x ) | . The following three ball inequality $$M_{u_{k}}(2r)\le C(k,r,\alpha )M_{u_{k}}(r)^{\alpha }M_{u_{k}}(4r)^{1-\alpha }$$ M u k ( 2 r ) ≤ C ( k , r , α ) M u k ( r ) α M u k ( 4 r ) 1 - α is well known, it holds for some $$\alpha \in (0,1)$$ α ∈ ( 0 , 1 ) and $$C(k,r,\alpha )>0$$ C ( k , r , α ) > 0 independent of $$u_{k}$$ u k . We show that the constant $$C(k,r,\alpha )$$ C ( k , r , α ) grows exponentially in k (when r is fixed and small). We also compare our result with the increased stability for solutions of the Cauchy problem for the Helmholtz equation on Riemannian manifolds.more » « less
-
Let $$\R$$ be a real closed field and $$\C$$ the algebraic closure of $$\R$$. We give an algorithm for computing a semi-algebraic basis for the first homology group, $$\HH_1(S,\mathbb{F})$$, with coefficients in a field $$\FF$$, of any given semi-algebraic set $$S \subset \R^k$$ defined by a closed formula. The complexity of the algorithm is bounded singly exponentially. More precisely, if the given quantifier-free formula involves $$s$$ polynomials whose degrees are bounded by $$d$$, the complexity of the algorithm is bounded by $$(s d)^{k^{O(1)}}$$. This algorithm generalizes well known algorithms having singly exponential complexity for computing a semi-algebraic basis of the zero-th homology group of semi-algebraic sets, which is equivalent to the problem of computing a set of points meeting every semi-algebraically connected component of the given semi-algebraic set at a unique point. It is not known how to compute such a basis for the higher homology groups with singly exponential complexity. As an intermediate step in our algorithm we construct a semi-algebraic subset $$\Gamma$$ of the given semi-algebraic set $$S$$, such that $$\HH_q(S,\Gamma) = 0$$ for $q=0,1$. We relate this construction to a basic theorem in complex algebraic geometry stating that for any affine variety $$X$$ of dimension $$n$$, there exists Zariski closed subsets \[ Z^{(n-1)} \supset \cdots \supset Z^{(1)} \supset Z^{(0)} \] with $$\dim_\C Z^{(i)} \leq i$, and $$\HH_q(X,Z^{(i)}) = 0$$ for $$0 \leq q \leq i$$. We conjecture a quantitative version of this result in the semi-algebraic category, with $$X$$ and $$Z^{(i)}$$ replaced by closed semi-algebraic sets. We make initial progress on this conjecture by proving the existence of $$Z^{(0)}$$ and $$Z^{(1)}$$ with complexity bounded singly exponentially (previously, such an algorithm was known only for constructing $$Z^{(0)}$$).more » « less
-
Abstract A subset E of a metric space X is said to be starlike-equivalent if it has a neighbourhood which is mapped homeomorphically into $$\mathbb{R}^n$$ for some n , sending E to a starlike set. A subset $$E\subset X$$ is said to be recursively starlike-equivalent if it can be expressed as a finite nested union of closed subsets $$\{E_i\}_{i=0}^{N+1}$$ such that $$E_{i}/E_{i+1}\subset X/E_{i+1}$$ is starlike-equivalent for each i and $$E_{N+1}$$ is a point. A decomposition $$\mathcal{D}$$ of a metric space X is said to be recursively starlike-equivalent, if there exists $$N\geq 0$$ such that each element of $$\mathcal{D}$$ is recursively starlike-equivalent of filtration length N . We prove that any null, recursively starlike-equivalent decomposition $$\mathcal{D}$$ of a compact metric space X shrinks, that is, the quotient map $$X\to X/\mathcal{D}$$ is the limit of a sequence of homeomorphisms. This is a strong generalisation of results of Denman–Starbird and Freedman and is applicable to the proof of Freedman’s celebrated disc embedding theorem. The latter leads to a multitude of foundational results for topological 4-manifolds, including the four-dimensional Poincaré conjecture.more » « less
-
abstract: In the early 1940s, P. A. Smith showed that if a finite $$p$$-group $$G$$ acts on a finite dimensional complex $$X$$ that is mod $$p$$ acyclic, then its space of fixed points, $X^G$, will also be mod $$p$$ acyclic. In their recent study of the Balmer spectrum of equivariant stable homotopy theory, Balmer and Sanders were led to study a question that can be shown to be equivalent to the following: if a $$G$$-space $$X$$ is a equivariant homotopy retract of the $$p$$-localization of a based finite $$G$$-C.W. complex, given $Hmore » « less
An official website of the United States government

