skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learning the Structure of Large Networked Systems Obeying Conservation Laws
Many networked systems such as electric networks, the brain, and social networks of opinion dynamics are known to obey conservation laws. Examples of this phenomenon include the Kirchoff laws in electric networks and opinion consensus in social networks. Conservation laws in networked systems are modeled as balance equations of the form X=B*Y, where the sparsity pattern of B*∈R^{p×p} captures the connectivity of the network on p nodes, and Y, X ∈ R^p are vectors of ''potentials'' and ''injected flows'' at the nodes respectively. The node potentials Y cause flows across edges which aim to balance out the potential difference, and the flows X injected at the nodes are extraneous to the network dynamics. In several practical systems, the network structure is often unknown and needs to be estimated from data to facilitate modeling, management, and control. To this end, one has access to samples of the node potentials Y, but only the statistics of the node injections X. Motivated by this important problem, we study the estimation of the sparsity structure of the matrix B* from n samples of Y under the assumption that the node injections X follow a Gaussian distribution with a known covariance Σ_X. We propose a new ℓ1-regularized maximum likelihood estimator for tackling this problem in the high-dimensional regime where the size of the network may be vastly larger than the number of samples n. We show that this optimization problem is convex in the objective and admits a unique solution. Under a new mutual incoherence condition, we establish sufficient conditions on the triple (n,p,d) for which exact sparsity recovery of B* is possible with high probability; d is the degree of the underlying graph. We also establish guarantees for the recovery of B* in the element-wise maximum, Frobenius, and operator norms. Finally, we complement these theoretical results with experimental validation of the performance of the proposed estimator on synthetic and real-world data.  more » « less
Award ID(s):
2048223 1934766
PAR ID:
10435129
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Advances in Neural Information Processing Systems 35 (NeurIPS 2022)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Networked systems that occur in various domains, such as electric networks, the brain, and opinion networks, are known to obey conservation laws. For instance, electric networks obey Kirchoff’s laws, and social networks obey opinion consensus. Conservation laws are often modeled as balance equations that relate appropriate injected flows and potentials at the nodes of the networks. A recent line of work considers the problem of estimating the unknown structure of such networked systems from observations of node potentials (and only the knowledge of the statistics of injected flows). Given the dynamic nature of the systems under consideration, an equally important task is estimating the change in the structure of the network from data – the so called differential network analysis problem. That is, given two sets of node potential observations, the goal is to estimate the structural differences between the underlying networks. We formulate this novel differential network analysis problem for systems obeying conservation laws and devise a convex estimator to learn the edge changes directly from node potentials. We derive conditions under which the estimate is unique in the high-dimensional regime and devise an efficient ADMM-based approach to perform the estimation. Finally, we demonstrate the performance of our approach on synthetic and benchmark power network data. 
    more » « less
  2. null (Ed.)
    Temporal networks serve as abstractions of many real-world dynamic systems. These networks typically evolve according to certain laws, such as the law of triadic closure, which is universal in social networks. Inductive representation learning of temporal networks should be able to capture such laws and further be applied to systems that follow the same laws but have not been unseen during the training stage. Previous works in this area depend on either network node identities or rich edge attributes and typically fail to extract these laws. Here, we propose Causal Anonymous Walks (CAWs) to inductively represent a temporal network. CAWs are extracted by temporal random walks and work as automatic retrieval of temporal network motifs to represent network dynamics while avoiding the time-consuming selection and counting of those motifs. CAWs adopt a novel anonymization strategy that replaces node identities with the hitting counts of the nodes based on a set of sampled walks to keep the method inductive, and simultaneously establish the correlation between motifs. We further propose a neural-network model CAW-N to encode CAWs, and pair it with a CAW sampling strategy with constant memory and time cost to support online training and inference. CAW-N is evaluated to predict links over 6 real temporal networks and uniformly outperforms previous SOTA methods by averaged 15% AUC gain in the inductive setting. CAW-N also outperforms previous methods in 5 out of the 6 networks in the transductive setting. 
    more » « less
  3. We consider a networked linear dynamical system with p agents/nodes. We study the problem of learning the underlying graph of interactions/dependencies from observations of the nodal trajectories over a time-interval T. We present a regularized non-casual consistent estimator for this problem and analyze its sample complexity over two regimes: (a) where the interval T consists of n i.i.d. observation windows of length T/n (restart and record), and (b) where T is one continuous observation window (consecutive). Using the theory of M-estimators, we show that the estimator recovers the underlying interactions, in either regime, in a time-interval that is logarithmic in the system size p. To the best of our knowledge, this is the first work to analyze the sample complexity of learning linear dynamical systems driven by unobserved not-white wide-sense stationary (WSS) inputs. 
    more » « less
  4. We consider a networked linear dynamical system with p agents/nodes. We study the problem of learning the underlying graph of interactions/dependencies from observations of the nodal trajectories over a time-interval T. We present a regularized non-casual consistent estimator for this problem and analyze its sample complexity over two regimes: (a) where the interval T consists of n i.i.d. observation windows of length T/n (restart and record), and (b) where T is one continuous observation window (consecutive). Using the theory of M-estimators, we show that the estimator recovers the underlying interactions, in either regime, in a time-interval that is logarithmic in the system size p. To the best of our knowledge, this is the first work to analyze the sample complexity of learning linear dynamical systems driven by unobserved not-white wide-sense stationary (WSS) inputs. 
    more » « less
  5. Real-world networked systems often show dynamic properties with continuously evolving network nodes and topology over time. When learning from dynamic networks, it is beneficial to correlate all temporal networks to fully capture the similarity/relevance between nodes. Recent work for dynamic network representation learning typically trains each single network independently and imposes relevance regularization on the network learning at different time steps. Such a snapshot scheme fails to leverage topology similarity between temporal networks for progressive training. In addition to the static node relationships within each network, nodes could show similar variation patterns (e.g., change of local structures) within the temporal network sequence. Both static node structures and temporal variation patterns can be combined to better characterize node affinities for unified embedding learning. In this paper, we propose Graph Attention Evolving Networks (GAEN) for dynamic network embedding with preserved similarities between nodes derived from their temporal variation patterns. Instead of training graph attention weights for each network independently, we allow model weights to share and evolve across all temporal networks based on their respective topology discrepancies. Experiments and validations, on four real-world dynamic graphs, demonstrate that GAEN outperforms the state-of-the-art in both link prediction and node classification tasks. 
    more » « less